These notes correspond to Section 12.8 in Stewart and Section 6.2 in Marsden and Tromba.

Change of Variables in Multiple Integrals

Recall that in single-variable calculus, if the integral
\[
\int_a^b f(u) \, du
\]
is evaluated by making a change of variable \(u = g(x) \), such that the interval \(\alpha \leq x \leq \beta \) is mapped by \(g \) to the interval \(a \leq u \leq b \), then
\[
\int_a^b f(u) \, du = \int_\alpha^\beta f(g(x))g'(x) \, dx.
\]

The appearance of the factor \(g'(x) \) in the integrand is due to the fact that if we divide \([a, b]\) into \(n \) subintervals \([u_{i-1}, u_i]\) of equal width \(\Delta u = (b - a)/n \), and if we divide \([\alpha, \beta]\) into \(n \) subintervals \([x_{i-1}, x_i]\) of equal width \(\Delta x = (\beta - \alpha)/n \), then
\[
\Delta u = u_i - u_{i-1} = g(x_i) - g(x_{i-1}) = g'(x_i^*)\Delta x,
\]
where \(x_{i-1} \leq x_i^* \leq x_i \). We will now generalize this change of variable to multiple integrals.

For simplicity, suppose that we wish to evaluate the double integral
\[
\int \int_D f(x, y) \, dA
\]
by making a change of variable
\[
x = g(u, v), \quad y = h(u, v), \quad a \leq u \leq b, \quad c \leq v \leq d.
\]
We divide the interval \([a, b]\) into \(n \) subintervals \([u_{i-1}, u_i]\) of equal width \(\Delta u = (b - a)/n \), and we divide \([c, d]\) into \(m \) subintervals \([v_{i-1}, v_i]\) of equal width \(\Delta v = (d - c)/m \). Then, the rectangle \([u_{i-1}, u_i] \times [v_{i-1}, v_i]\) is approximately mapped by \(g \) and \(h \) into a parallelogram with adjacent sides
\[
\mathbf{r}_u = (g(u_i, v_{i-1}) - g(u_{i-1}, v_{i-1}), h(u_i, v_{i-1}) - h(u_{i-1}, v_{i-1})),
\]
\[
\mathbf{r}_v = (g(u_{i-1}, v_i) - g(u_{i-1}, v_{i-1}), h(u_{i-1}, v_i) - h(u_{i-1}, v_{i-1})).
\]
By the Mean Value Theorem, we have
\[\mathbf{r}_u \approx (g_u(u_{i-1}, v_{i-1}), h_u(u_{i-1}, v_{i-1})) \Delta u, \quad \mathbf{r}_v \approx (g_v(u_{i-1}, v_{i-1}), h_v(u_{i-1}, v_{i-1})) \Delta v. \]

The area of this parallelogram is given by
\[|\mathbf{r}_u \times \mathbf{r}_v| = \left| \frac{\partial g}{\partial u} \frac{\partial h}{\partial v} - \frac{\partial g}{\partial v} \frac{\partial h}{\partial u} \right| \Delta u \Delta v. \]

It follows that
\[\int \int_D f(x, y) \, dx \, dy = \int \int_{\tilde{D}} f(g(u, v), h(u, v)) \left| \frac{\partial (x, y)}{\partial (u, v)} \right| \, du \, dv, \]
where \(\tilde{D} = [a, b] \times [c, d] \) is the domain of \(g \) and \(h \), and
\[\frac{\partial (x, y)}{\partial (u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \]
is the Jacobian of the transformation from \((u, v)\) to \((x, y)\). It is also the determinant of the Jacobian matrix of the vector-valued function that maps \((u, v)\) to \((x, y)\).

Example Let \(D \) be the parallelogram with vertices \((0, 0)\), \((2, 4)\), \((6, 1)\), and \((8, 5)\). To integrate a function \(f(x, y) \) over \(D \), we can use a change of variable \((x, y) = (g(u, v), h(u, v))\) that maps a rectangle to this parallelogram, and then integrate over the rectangle.

Using the vertices, we find that the equations of the edges are
\[-x + 6y = 0, \quad -x + 6y = 22, \quad 2x - y = 0, \quad 2x - y = 11. \]

Therefore, if we define the new variables \(u \) and \(v \) by the equations
\[u = -x + 6y, \quad v = 2x - y, \]
then, for \((x, y) \in D\), we have \((u, v)\) belonging to the rectangle \(0 \leq u \leq 22, 0 \leq v \leq 11\).

To rewrite an integral over \(D \) in terms of \(u \) and \(v \), it is much easier to express the original variables in terms of the new variables than the other way around. Therefore, we need to solve the equations defining \(u \) and \(v \) for \(x \) and \(y \). From the equation for \(u \), we have \(x = 6y - u \). Substituting into the equation for \(v \), we obtain \(v = 2(6y - u) - y \), which yields \(y = h(u, v) = \frac{1}{11}(2u + v) \). Substituting this into the equation for \(u \) yields \(x = g(u, v) = \frac{1}{11}(u + 6v) \).

The Jacobian of this transformation is
\[\frac{\partial (x, y)}{\partial (u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = \frac{1}{112}[1(1) - 6(2)] = -\frac{1}{11}. \]

We conclude that
\[\int \int_D f(x, y) \, dx \, dy = \frac{1}{11} \int \int_{\tilde{D}} f(g(u, v), h(u, v)) \, du \, dv. \]
In general, when integrating a function $f(x_1, x_2, \ldots, x_n)$ over a region $D \subset \mathbb{R}^n$, if the integral is evaluated using a change of variable $(x_1, x_2, \ldots, x_n) = g(u_1, u_2, \ldots, u_n)$ that maps a region $E \subset \mathbb{R}^n$ to D, then

$$
\int_D f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n = \int_E (f \circ g)(u_1, \ldots, u_n) \mid \det(J_g(u_1, \ldots, u_n)) \mid du_1 \cdots du_n,
$$

where

$$
J_g(u_1, u_2, \ldots, u_n) = \begin{bmatrix}
\frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} & \cdots & \frac{\partial x_1}{\partial u_n} \\
\frac{\partial x_2}{\partial u_1} & \frac{\partial x_2}{\partial u_2} & \cdots & \frac{\partial x_2}{\partial u_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_n}{\partial u_1} & \frac{\partial x_n}{\partial u_2} & \cdots & \frac{\partial x_n}{\partial u_n}
\end{bmatrix}
$$

is the Jacobian matrix of g and $\det(J_g(u_1, u_2, \ldots, u_n))$ is its determinant, which is simply referred to as the Jacobian of the transformation g.

Example Consider the transformation from spherical to Cartesian coordinates,

$$
x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi.
$$

Then, the Jacobian matrix of this transformation is

$$
\begin{bmatrix}
\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\
\frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta}
\end{bmatrix}
= \begin{bmatrix}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\rho \cos \phi & 0 & -\sin \phi
\end{bmatrix}.
$$

It follows that the Jacobian of this transformation is given by the determinant of this matrix,

$$
\left|\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\sin \phi
\end{array}\right| = \cos \phi \left|\begin{array}{ccc}
-\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
-\rho \sin \phi
\end{array}\right| - \rho \cos \phi \left|\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta \\
\rho \sin \phi \cos \theta
\end{array}\right|
$$

$$
= \cos \phi \left[-\rho^2 \sin \phi \sin \phi \sin^2 \theta - \rho^2 \sin \phi \cos \phi \cos^2 \theta\right] -
\rho \sin \phi \left[\rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \cos^2 \phi \sin^2 \theta\right]
$$

$$
= -\rho^2 \cos^2 \phi \sin \phi - \rho^2 \sin^2 \phi \sin \phi
$$

$$
= -\rho^2 \sin \phi.
$$

The absolute value of the Jacobian is the factor that must be included in the integrand when converting a triple integral from Cartesian to spherical coordinates. □
Practice Problems

Practice problems from the recommended textbooks are:

- Stewart: Section 12.8, Exercises 1-15 odd
- Marsden/Tromba: Section 6.2, Exercises 1, 3, 5