These notes correspond to Section 7.2 in the text.

Eigenvalues and Eigenvectors

We have learned what it means for a sequence of vectors to converge to a limit. However, using the definition alone, it may still be difficult to determine, conclusively, whether a given sequence of vectors converges. For example, suppose a sequence of vectors is defined as follows: we choose the initial vector $\mathbf{x}^{(0)}$ arbitrarily, and then define the rest of the sequence by

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)}, \quad k = 0, 1, 2, \ldots$$

for some matrix A. Such a sequence will actually arise when we discuss the convergence of various iterative methods for solving systems of linear equations.

An important question will be whether a sequence of this form converges to the zero vector. This will be the case if

$$\lim_{k \to \infty} \|\mathbf{x}^{(k)}\| = 0$$

in some vector norm. From the definition of $\mathbf{x}^{(k)}$, we must have

$$\lim_{k \to \infty} \|A^k\mathbf{x}^{(0)}\| = 0.$$

From the submultiplicative property of matrix norms,

$$\|A^k\mathbf{x}^{(0)}\| \leq \|A\|^k\|\mathbf{x}^{(0)}\|,$$

from which it follows that the sequence will converge to the zero vector if $\|A\| < 1$. However, this is only a sufficient condition; it is not necessary.

To obtain a sufficient and necessary condition, it is necessary to achieve a better understanding of the effect of matrix-vector multiplication on the magnitude of a vector. However, because matrix-vector multiplication is a complicated operation, this understanding can be difficult to acquire. Therefore, it is helpful to identify circumstances under which this operation can be simply described.

To that end, we say that a nonzero vector \mathbf{x} is an eigenvector of an $n \times n$ matrix A if there exists a scalar λ such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$
The scalar λ is called an eigenvalue of A corresponding to x. Note that although x is required to be nonzero, it is possible that λ can be zero. It can also be complex, even if A is a real matrix.

If we rearrange the above equation, we have

$$(A - \lambda I)x = 0.$$

That is, if λ is an eigenvalue of A, then $A - \lambda I$ is a singular matrix, and therefore $\det(A - \lambda I) = 0$. This equation is actually a polynomial in λ, which is called the characteristic polynomial of A. If A is an $n \times n$ matrix, then the characteristic polynomial is of degree n, which means that A has n eigenvalues, which may repeat.

The following properties of eigenvalues and eigenvectors are helpful to know:

- If λ is an eigenvalue of A, then there is at least one eigenvector of A corresponding to λ.
- If there exists an invertible matrix P such that $B = PAP^{-1}$, then A and B have the same eigenvalues. We say that A and B are similar, and the transformation PAP^{-1} is called a similarity transformation.
- If A is a symmetric matrix, then its eigenvalues are real.
- If A is a skew-symmetric matrix, meaning that $A^T = -A$, then its eigenvalues are either equal to zero, or are purely imaginary.
- If A is a real matrix, and $\lambda = u + iv$ is a complex eigenvalue of A, then $\bar{\lambda} = u - iv$ is also an eigenvalue of A.
- If A is a triangular matrix, then its diagonal entries are the eigenvalues of A.
- $\det(A)$ is equal to the product of the eigenvalues of A.
- $\text{tr}(A)$, the sum of the diagonal entries of A, is also equal to the sum of the eigenvalues of A.

It follows that any method for computing the roots of a polynomial can be used to obtain the eigenvalues of a matrix A. However, in practice, eigenvalues are normally computed using iterative methods that employ orthogonal similarity transformations to reduce A to upper triangular form, thus revealing the eigenvalues of A. In practice, such methods for computing eigenvalues are used to compute roots of polynomials, rather than using polynomial root-finding methods to compute eigenvalues, because they are much more robust with respect to roundoff error.

It can be shown that if each eigenvalue λ of a matrix A satisfies $|\lambda| < 1$, then, for any vector x,

$$\lim_{k \to \infty} A^k x = 0.$$

Furthermore, the converse of this statement is also true: if there exists a vector x such that $A^k x$ does not approach 0 as $k \to \infty$, then at least one eigenvalue λ of A must satisfy $|\lambda| \geq 1$.

2
Therefore, it is through the eigenvalues of A that we can describe a necessary and sufficient condition for a sequence of vectors of the form $x^{(k)} = A^k x^{(0)}$ to converge to the zero vector. Specifically, we need only check if the magnitude of the largest eigenvalue is less than 1. For convenience, we define the spectral radius of A, denoted by $\rho(A)$, to be $\max |\lambda|$, where λ is an eigenvalue of A. We can then conclude that the sequence $x^{(k)} = A^k x^{(0)}$ converges to the zero vector if and only if $\rho(A) < 1$.

The spectral radius is closely related to natural (induced) matrix norms. Let λ be the largest eigenvalue of A, with x being a corresponding eigenvector. Then, for any natural matrix norm $\|\cdot\|$, we have

$$\rho(A) \|x\| = |\lambda| \|x\| = \|\lambda x\| = \|A x\| \leq \|A\| \|x\|.$$

Therefore, we have $\rho(A) \leq \|A\|$. When A is symmetric, we also have

$$\|A\|_2 = \rho(A).$$

For a general matrix A, we have

$$\|A\|_2 = (\rho(A^T A))^{1/2},$$

which can be seen to reduce to $\rho(A)$ when $A^T = A$, since, in general, $\rho(A^k) = \rho(A)^k$.

Because the condition $\rho(A) < 1$ is necessary and sufficient to ensure that $\lim_{k \to \infty} A^k x = 0$, it is possible that such convergence may occur even if $\|A\| \geq 1$ for some natural norm $\|\cdot\|$. However, if $\rho(A) < 1$, we can conclude that

$$\lim_{k \to \infty} \|A^k\| = 0,$$

even though $\lim_{k \to \infty} \|A\|^k$ may not even exist.

In view of the definition of a matrix norm, that $\|A\| = 0$ if and only if $A = 0$, we can conclude that if $\rho(A) < 1$, then A^k converges to the zero matrix as $k \to \infty$. In summary, the following statements are all equivalent:

1. $\rho(A) < 1$
2. $\lim_{k \to \infty} \|A^k\| = 0$, for any natural norm $\|\cdot\|$
3. $\lim_{k \to \infty} (A^k)_{ij} = 0$, $i, j = 1, 2, \ldots, n$
4. $\lim_{k \to \infty} A^k x = 0$

We will see that these results are very useful for analyzing the convergence behavior of various iterative methods for solving systems of linear equations.