
Recent Posts
Recent Comments
 Determinants II: Determinants of Order $n$  MathPhys Archive on Determinants I: Determinants of Order 2
 Inverses  MathPhys Archive on The Matrix Associated with a Linear Map
 The Matrix Associated with a Linear Map  MathPhys Archive on Linear Maps
 Introduction to Topology 3: Limit Points, Boundary Points, and Sequential Limits  MathPhys Archive on Introduction to Topology 1: Open and Closed Sets
 Parallel Transport, Holonomy, and Curvature  MathPhys Archive on Line Bundles
Archives
Categories
 Algebraic Topology
 Calculus
 Classical Differential Geometry
 College Algebra
 Differential Equations
 Differential Geometry
 Electromagnetism
 Engineering Mathematics
 Functions of a Complex Variable
 General Topology
 Homology
 Lie Groups and Lie Algebras
 Linear Algebra
 Mathematical Physics
 Partial Differential Equations
 Precalculus
 Quantum Mechanics
 Representation Theory
 Sage
 Trigonometry
 Uncategorized
Meta
Category Archives: Classical Differential Geometry
Structural Equations
Definition. The dual 1forms $\theta_1,\theta_2,\theta_3$ of a frame $E_1,E_2,E_3$ on $\mathbb{E}^3$ are defined by $$\theta_i(v)=v\cdot E_i(p),\ v\in T_p\mathbb{E}^3.$$ Clearly $\theta_i$ is linear. Example. The dual 1forms of the natural frame $U_1,U_2,U_3$ are $dx_1$, $dx_2$, $dx_3$ since $$dx_i(v)=v_i=v\cdot U_i(p)$$ for each … Continue reading
Connection Forms
Let $E_1, E_2, E_3$ be an arbitrary frame field on $\mathbb{E}^3$. At each $v\in T_p\mathbb{E}^3$, $\nabla_v E_i\in T_p\mathbb{E}^3$, $i=1,2,3$. So, there exists uniquely 1forms $\omega_{ij}:T_p\mathbb{E}^3\longrightarrow\mathbb{R}$, $i,j=1,2,3$ such that \begin{align*} \nabla_vE_1&=\omega_{11}(v)E_1(p)+\omega_{12}(v)E_2(p)+\omega_{13}(v)E_3(p),\\ \nabla_vE_2&=\omega_{21}(v)E_1(p)+\omega_{22}(v)E_2(p)+\omega_{23}(v)E_3(p),\\ \nabla_vE_3&=\omega_{31}(v)E_1(p)+\omega_{32}(v)E_2(p)+\omega_{33}(v)E_3(p) \end{align*} for each $v\in T_p\mathbb{E}^3$. These equations are … Continue reading
Frame Fields
In Euclidean 3space $\mathbb{E}^3$, we have naturally defined frame $U_1(p)$, $U_2(p)$, $U_3(p)$ for each $p\in\mathbb{E}^3$, where $U_1=(1,0,0)$, $U_2(0,1,0)$, $U_3=(0,0,1)$. The frame $U_1$, $U_2$, $U_3$ (as vector fields) is called the natural frame. As a generalization of the natural frame, we … Continue reading