
FAUGÈRE'S F5 ALGORITHM

JOHN PERRY

Abstract. This report gives pseudocode for an implementation the F5 algorithm, noting
errors found both in Faugère's seminal 2002 paper and Stegers' 2006 undergraduate thesis.
It also outlines a relatively easy optimization that, in our experience, produces a substiantial
improvement to the algorithm's e�ciency.

1. Introduction

The F5 algorithm has twice appeared in print [2, 6], both times with errors that are not
easy to detect and debug. In this note we present new pseudocode written during the creation
of two new, open-source implementations [5, 1]. We do not review the theory underlying
the algorithm; aside from the references already noted, the interested reader should review
[3, 4].
In Section 2 we preview the notation and a few terms. In Section 4 we comment on the

Maple implementation. In Section 3 we present a relatively easy optimization that provides
a substantial improvement in performance, despite one researcher's having advised against
it. In Section 5 we comment on the pseudocode, which begins on page 5. We note, as
appropriate, the places where our pseudocode diverges from that of Faugère or Stegers (or
both!).
If the reader should �nd an error, please notify the author immediately so that he can

correct it.

2. Notation

We write R = F [x1, x2, . . . , xn] for a polynomial ring, and <T for an admissible ordering
on the power products of R. For the leading term of a polynomial f ∈ R we write lt<T

(f);
for the leading coe�cient we write lc<T

(f). We do not include the coe�cient in the leading
term.
Essential to F5 is the notion of a labeled polynomial. We denote this as a tuple of a

signature (µ, ν) and a polynomial p. (Faugère uses µFν to indicate the signature; Stegers,
(µ, eν).) The signature should always satisfy for some hν , hν+1, . . . , hm ∈ R
(1) p = hνfν + hν+1fν+1 + · · ·+ hmfm and hν 6= 0 and µ = lt<T

(hν) .

The fact that hν 6= 0 is crucial. A labeled polynomial that satis�es (1) is called admissible,
but F5 is careful not to generate inadmissible labeled polynomials. (See for example the
precautions taken in Algorithm Top_Reduction to assign the correct signature to a top-
reduced polynomial.) Except for the algorithm's inputs, lt<T

(hν) · lt<T
(fν) >T lt<T

(p).
We use L to denote a list of labeled polynomials. The functions Sig (k) and Poly (k) return

the signature and the polynomial, respectively, of the labeled polynomial Lk. The signature
ordering ≺ is de�ned exactly as Faugère de�nes it: (µk, νk) ≺ (µ`, ν`) if and only if
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• νk > ν`, or
• νk = ν` and µk <T µ`.

As do Faugère and Stegers, given a power product u and a signature (µ, ν) we de�ne u ·
(µ, ν) = (u · µ, ν).
We also use B to denote the reduced Gröbner basis of a previous system; see Section 3 for

some explanation.

3. Two easy optimizations

Stegers writes on page 41 that,

We experienced a speed-up by computing the (unique) reduced Gröbner basis
Gred

i . . . after completing step i, and subsequently checking if polynomials are

top-reducible with respect to Gred
i instead of Ĝi. It is not suggested to replace

the polynomials in Ĝi completely, as this would almost certainly result in
inadmissible polynomials.

The last sentence is correct, but we have found a workaround. After computing the reduced
basis Gred

i , one need only set up the appropriate records in the labeled polynomails L and
the rewrite rules W, with (a) new, admissible signatures of the reduced basis, and (b) the
reductions to zero of the reduced basis' S-polynomials. This is quite easy to implement; the
reader will �nd our solution in Algorithm Basis, where our notation for the reduced Gröbner
basis is B. We have observed a 30% improvement on problems like Cyclic-n.
Another optimization, with less drastic results, is to sort the input to Algorithm S by

increasing signature rather than by increasing lcm. We have found that this decreases the
number of polynomials computed in an unoptimized F5.

4. Notes on the Maple implementation

The Maple implementation is quite slow. Stegers reports timings of seven seconds for
Cyclic 6 on an Athlon XP 2500 with 512 MB RAM running MAGMA 2.11-14. On our
machine, a 2.8 GHz Intel Core 2 Duo with 2 GB RAM, the same system requires nearly
�fteen minutes on Maple 11. Other systems produce similar di�erences. Is Maple really one
hundred twenty times slower than MAGMA? Our implementation is very close to that of
Stegers', so we doubt the slowdown lies in the actual code. In most cases, the results are the
same: we compute the same number of S-polynomials, and obtain the same number of zero
reductions. However, certain systems appear to have a few more S-polynomials and zero
reductions than Stegers, so there may be a minor issue or two.1

The subalgorithms require several global variables; the Maple code implements this using
variables local to the module containing all the procedures. The user can read the value of
these variables using the Report_...() functions.
The implementation also relies on a few short procedures designed to assist with certain

tasks. These include:

Top_Reducible to determine if a monomial is top-reducible by the previously-computed
Gröbner basis;

1We doubt it. More recently, we implemented F5 as a Singular library. The result is substantially faster
than Maple, with Cyclic 6 completing in 160 seconds on a 1.33 GHz G4 with 1 GB RAM in the unoptimized
implementation. The optimized implementation completes in 114 seconds. This is still slower than MAGMA
(assuming that the timing mechanisms measure the same things).
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First_Sig_Min to test whether signature of the one labeled polynomial is smaller than
the signature of a second;

Sig_Comp to use First_Sig_Min in a sorter;
Sig_Prod to multiply a monomial to a signature;
Add_Labeled_Poly to add a labeled polynomial to the list of labeled polynomials.

We have omitted the details of these subalgorithms, which in any case are trivial. We also
use Maple's Groebner package for a number of utilities.

5. Notes on the pseudocode

We have indicated where our pseudocode diverges from that of Faugère or Stegers. As far
as we can tell, the di�erences in Faugère and Stegers are for the most part fatal errors, with
two exceptions. In Algorithm Crit_Pair, neither tests for equal signatures in the construction
of the S-polynomial, although this is a sign of a pair that is not normalized. Further, Stegers
sometimes tests for normalized polynomials using a smaller set. This may be more correct
given the actual criterion, but in following Faugère's choice to use the previous Gröbner basis
only we have found no cases where the result is any di�erent. We plan to investigate this
further.

Global variables. The algorithm relies on four global variables:

L a list of labeled polynomials
B a reduced Gröbner basis, computed previously
W an array of lists of rewrite rules
<T an admissible ordering

Each subalgorithm speci�es which global variables are necessary. In a language that does
not use global variables (Stegers states that MAGMA is such a language), one could pass
these variables as inputs.
In the Maple implementation, L is actually a Maple table, to avoid di�culties inherent to

Maple lists (ine�ciency, size restraints, etc.). This requires us to keep track of how many
elements are in the list, and we have set aside a variable for that. The same is true for the
lists of rules in W.

Incremental nature of the algorithm. To maximize the e�ect of Faugère's Criterion,
the F5 algorithm takes an incremental approach, computing Gröbner bases of {f1}, {f1, f2},
. . . , {f1, f2, . . . , fm}. Algorithm Basis controls this loop; on each iteration, Algorithm
PartialBasis computes a Gröbner Basis Gcurr of {f1, f2, . . . , fi}, using as its starting point a
basis Gprev for {f1, f2, . . . , fi−1}.
Faugère uses the title �incremental F5� for our Algorithm Basis; Stegers titles it �Algo-

rithm 3: F5 � Main loop.� Faugère uses the title �F5� for our Algorithm PartialBasis; Stegers
calls it �Algorithm 4: F5 � Core routine�.

Construction and reduction of S-polynomials. Algorithms Crit_Pair and SPols gen-
erate the critical pairs and construct the S-polynomials. Each employs a criterion that
discards certain useless critical pairs; Crit_Pair uses Faugère's criterion, and SPols uses a
criterion developed from [4].
Algorithms Reduction, Top_Reduction, and Find_Reductor:

(1) reduce an S-polynomial with respect to the previous Gröbner basis, and
(2) top-reduce the reduced form with respect to the current set of generators.
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Faugère's name for the last of these three is �IsReducible�; we have followed Stegers' conven-
tion.

Record-keeping. One of the major strengths of F5 is how it keeps records of syzygies that
have already been computed; the �rewrite rules� keep track of this. Faugère gives Algorithm
Is_Rewritable the name �Rewritten?�, and Algorithm Find_Rewriting the name �Rewrit-
ten�. Stegers named the �rst �Rewritable� and the second �Rewrite�. We have followed
Stegers for the �rst, but prefer our name for the second.
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Algorithm 1. Basis.
globals L, W, <T

inputs

F = (f1, f2, . . . , fm) ∈ Rm

<, an admissible ordering
outputs a Gröbner basis of F with respect to <
do

<T :=<
Sort F by increasing total degree, breaking ties by increasing leading term.
� Initialize the record keeping.
W := Array (1 . . . 2)
W1 := List ()
W2 := List ()
L := List (1 . . . 2)
L1 :=

(
(1, 1) , f1 · (lc<T

(f1))
−1)

G := Array (1 . . . m)
� Compute the bases of (f1), (f1, f2), . . . , (f1, f2, . . . , fm).
Gprev = {1}
B = {f1}
ctr := 2
while ctr ≤ m

Gcurr := PartialBasis (#B + 1, B,Gprev)
if ∃i ∈ Gcurr such that Poly (i) = 1

return {1}
Let B be the reduced Gröbner basis of (Poly (j))j∈Gcurr

� Set up records for B
if ctr 6= 1

L := List (1 . . . #B + 1)
W := Array (1 . . . #B + 1)
Gcurr := {};
for i := 1 to #B

Li := ((1, i) , Bi)
Gcurr := Gcurr ∪ {i}
Wctr := List ()
t := lt<T

(Bi)
� All the S-polynomials of B reduce to zero; document this
for j := i + 1 to #B

u := lcm (t, lt<T
(Bj)) /lt<T

(Bj)
Append ((j, u) , 0) to L
Add_Rule ()

ctr := ctr + 1
Wctr := List ()
Lctr :=

(
(1, ctr) , fctr · (lc<T

(fctr))
−1)

return B
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Algorithm 2. Partial_Basis.
globals L, <T

inputs

i ∈ N
B, a reduced Gröbner basis of (f1, f2, . . . , fi−1) with respect to <T

Gprev ∈ N#Gprev , indices in L of B
outputs Gcurr, indices in L of a Gröbner basis of (f1, f2, . . . , fi) with respect to <T

do

Gcurr := Gprev ∪ {i}
P :=

⋃
j∈Gprev

Crit_Pair (i, j,Gprev)

while P 6= ∅
d := min {deg t : {t, k, u, `, v} ∈ P}
Pd := {{t, k, u, `, v} ∈ P : d = deg t}
P := P\Pd

S := SPols (Pd)
R := Reduction (S, B,Gprev,Gcurr)
for k ∈ R

P := P ∪
(⋃

j∈Gcurr
Crit_Pair (j, k,Gprev)

)
Gcurr := Gcurr ∪ {k}

return Gcurr
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Algorithm 3. Crit_Pair.
globals <T

inputs

k, ` ∈ N such that i ≤ k < ` ≤ #L
Gprev ∈ N#Gprev , indices in L of a Gröbner basis of (f1, f2, . . . , fi−1) w/respect to

<T

outputs {(t, u, k, v, `)}, corresponding to a critical pair {k, l} necessary for
the computation of a Gröbner basis of (f1, f2, . . . , fi); ∅ otherwise

do

tk := lt<T
(Poly (k))

t` := lt<T
(Poly (`))

t := lcm (tk, t`)
u1 := t/tk
u2 := t/t`
� Neither Faugère nor Stegers notes the test below, useful in non-regular systems.
if u1 · Sig (k) = u2 · Sig (`)

return ∅
(µ1, ν1) := Sig (k)
(µ2, ν2) := Sig (`)
if ν1 = i and u1 · µ1 is top-reducible by Gprev � Stegers writes Gν1

return ∅
if ν2 = i and u2 · µ2 is top-reducible by Gprev � Stegers writes Gν2

� Another minor optimization is to check Is_Rewritable here
return ∅

if u1 · Sig (k) ≺ u2 · Sig (`) � Faugère's writeup compares Sig (k) ≺ Sig (`).
Swap u1 with u2 and k with `

return {(t, u1, k, u2, `)}
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Algorithm 4. Spols.
globals L, <T

inputs

P , a list of critical pairs
outputs S, a list of indices in L of S-polynomials computed

for a Gröbner basis of (f1, f2, . . . , fi)
do

S := ()
� Faugère and Stegers do not say to sort P , but performance su�ers if not.
� For the example in Faugère's paper, 8 polynomials would be computed, not 7.
Sort P from smallest to largest lcm
for (t, k, u, `, v) ∈ P

if not Is_Rewritable (u, k) and not Is_Rewritable (v, `)
Compute s, the S-polynomial of Poly (k) and Poly (`)
if s 6= 0

� Stegers writes Sig (`).
Append (u · Sig (k) , s) to L
Add_Rule ()
Append #L to S

Sort S by increasing signature
return S
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Algorithm 5. Reduction.
globals L
inputs

S, a list of indices of polynomials added to the generators Gi

B, a reduced Gröbner basis of (f1, f2, . . . , fi−1) with respect to <T

Gprev ∈ N#Gprev , indices in L corresponding to B
Gcurr ∈ N#Gcurr, indices in L of a list of generators of the ideal of (f1, f2, . . . , fi)

outputs completed, a subset of G corresponding to reduced polynomials
do

to_do := S
completed := ∅
� Our implementation optimizes out the next two lines
� Stegers writes Gcurr (his notation: G′).
� reducers := {Poly (ctr) : ctr ∈ Gprev}
while to_do 6= ()

Let k be the element of to_do such that Sig (k) is minimal.
to_do := to_do\ {k}
� Unoptimized (Faugère, Stegers):
� h := Normal_Form (Poly (k) , reducers, <T )
h := Normal_Form (Poly (k) , B, <T )
Lk := (Sig (k) , h)
newly_completed, redo := Top_Reduction (k,Gprev,Gcurr ∪ completed)
completed := completed ∪ newly_completed
� Faugere and Stegers both write to_do := to_do ∪ redo,
� but to_do is not a set, and for reasons of e�ciency needs to be sorted.
for j ∈ redo

Insert j in to_do , sorting by increasing signature
return completed
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Algorithm 6. Top_Reduction.
globals L, <T

inputs

k, the index of a labeled polynomial
Gprev ∈ N#Gprev , indices in L of a Gröbner basis of (f1, f2, . . . , fi−1) w/respect to

<T

Gcurr ∈ N#Gcurr, indices in L of a list of generators of the ideal of (f1, f2, . . . , fi)
outputs

completed, which has value {k} if Lk was not top-reduced and ∅ otherwise
to_do, which has value ∅ if Lk was not top-reduced,

{k} if top-reduction generates a labeled polynomial with the same signature
as Lk, and

{k, #L} if top-reduction generates a labeled polynomial with a new signature.
(note the generation of a new labeled polynomial in the latter case!)

do

if Poly (k) = 0 � This will not happen in a regular sequence.
warn �Reduction to zero!�
return ∅, ∅

p := Poly (k)
J := Find_Reductor (k,Gprev,Gcurr)
if J = ∅

if p 6= 0
Lk :=

(
Sig (k) , p · (lc<T

(p))−1)
return {k} , ∅

� J 6= ∅, so top-reduce.
Let j be the single element in J
q := Poly (j)

u :=
lt<T

(p)

lt<T
(q)

c := lc<T
(p) · (lc<T

(q))−1

p := p− c · u · q
if p 6= 0

p := p · (lc<T
(p))−1

if u · Sig (j) ≺ Sig (k)
Lk := (Sig (k) , p)
return ∅, {k}

else

Append (u · Sig (j) , p) to L
Add_Rule ()
� Faugère writes ∅, {k, j} below.
return ∅, {k, #L}
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Algorithm 7. Find_Reductor.
globals <T

inputs

k, the index of a labeled polynomial
Gprev ∈ N#Gprev , indices in L of a Gröbner basis with respect to <T of

(f1, f2, . . . , fi−1)
Gcurr ∈ N#Gcurr, indices in L of a list of generators of the ideal of (f1, f2, . . . , fi)

outputs

J , where J = {j} if j ∈ Gcurr and Poly (k) is safely top-reducible by Poly (j);
otherwise J = ∅

do

t := lt<T
(Poly (k))

for j ∈ Gcurr

t′ = lt<T
(Poly (j))

if t′ | t
u := t/t′

(µj, νj) := Sig (j)
if u · Sig (j) 6= Sig (k) and not Is_Rewritable (u, j)

and u · µj is not top-reducible by Gprev

return {j}
return ∅

Algorithm 8. Add_Rule.
globals L, W
do

k := #L
(µ, ν) := Sig (k)
Append (µ, k) to Wν

return

Algorithm 9. Is_Rewritable.
inputs

u, a power product
k, the index of a labeled polynomial in L

outputs true if u · Sig (k) is rewritable by another labeled polynomial
(see Find_Rewriting)

do

j := Find_Rewriting (u, k)
return j 6= k
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Algorithm 10. Find_Rewriting.
globals W
inputs

u, a power product
k, the index of a labeled polynomial in L

outputs

j, the index of a labeled polynomial in L such that if (µj, νj) = Sig (j)
and (µk, νk) = Sig (k), then νj = νk and µj | u · µk

and Lj was added to Wνk
more recently than Lk.

do

(µk, ν) := Sig (k)
ctr := #Wν

while ctr > 0
(µj, j) := Wν,ctr

if µj | u · µk

return j
ctr := ctr− 1

return k
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