The Axiom of Infinity and The Natural Numbers

Bernd Schröder
Infinite Sets
Infinite Sets

1. The axioms that we have introduced so far provide for a rich theory.
Infinite Sets

1. The axioms that we have introduced so far provide for a rich theory.

2. But they do not guarantee the existence of infinite sets.
Infinite Sets

1. The axioms that we have introduced so far provide for a rich theory.
2. But they do not guarantee the existence of infinite sets.
3. In fact, the superstructure over the empty set is a model that satisfies all the axioms so far and which does not contain any infinite sets.
Infinite Sets

1. The axioms that we have introduced so far provide for a rich theory.
2. But they do not guarantee the existence of infinite sets.
3. In fact, the superstructure over the empty set is a model that satisfies all the axioms so far and which does not contain any infinite sets. (Remember that the superstructure itself is not a set in the model.)
The Axiom of Infinity

There is a set I that contains \emptyset as an element, and for each $a \in I$ the set $a \cup \{a\}$ is also in I. In some ways this axiom says we can "cut across" the different levels of a superstructure and still obtain a set. The superstructure over I is a model that satisfies all axioms introduced so far.
The Axiom of Infinity

There is a set I that contains \emptyset as an element, and for each $a \in I$ the set $a \cup \{a\}$ is also in I.
The Axiom of Infinity

There is a set \(I \) that contains \(\emptyset \) as an element, and for each \(a \in I \) the set \(a \cup \{a\} \) is also in \(I \).

In some ways this axiom says we can “cut across” the different levels of a superstructure and still obtain a set.
The Axiom of Infinity

There is a set I that contains \emptyset as an element, and for each $a \in I$ the set $a \cup \{a\}$ is also in I.

In some ways this axiom says we can “cut across” the different levels of a superstructure and still obtain a set.

The superstructure over I is a model that satisfies all axioms introduced so far.
Theorem.
Theorem. *(Existence of the natural numbers.)*
Theorem. (Existence of the natural numbers.) There is a set, denoted \mathbb{N} and called the set of natural numbers, so that the following hold.
Theorem. *(Existence of the natural numbers.)* There is a set, denoted \mathbb{N} and called the set of **natural numbers**, so that the following hold.

1. *There is a special element in \mathbb{N}, which we denote by 1.*
Theorem. (Existence of the natural numbers.) There is a set, denoted \mathbb{N} and called the set of natural numbers, so that the following hold.

1. There is a special element in \mathbb{N}, which we denote by 1.
2. For each $n \in \mathbb{N}$, there is a corresponding element $n' \in \mathbb{N}$, called the successor of n.
Theorem. (Existence of the natural numbers.) There is a set, denoted \(\mathbb{N} \) and called the set of natural numbers, so that the following hold.

1. There is a special element in \(\mathbb{N} \), which we denote by 1.
2. For each \(n \in \mathbb{N} \), there is a corresponding element \(n' \in \mathbb{N} \), called the successor of \(n \).
3. The element 1 is not the successor of any natural number.
Theorem. (Existence of the natural numbers.) There is a set, denoted \mathbb{N} and called the set of natural numbers, so that the following hold.

1. There is a special element in \mathbb{N}, which we denote by 1.

2. For each $n \in \mathbb{N}$, there is a corresponding element $n' \in \mathbb{N}$, called the successor of n.

3. The element 1 is not the successor of any natural number.

4. Principle of Induction. If $S \subseteq \mathbb{N}$ is such that 1 $\in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.
Theorem. (Existence of the natural numbers.) There is a set, denoted \mathbb{N} and called the set of natural numbers, so that the following hold.

1. There is a special element in \mathbb{N}, which we denote by 1.
2. For each $n \in \mathbb{N}$, there is a corresponding element $n' \in \mathbb{N}$, called the successor of n.
3. The element 1 is not the successor of any natural number.
4. Principle of Induction. If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.
5. For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.
Theorem. (Existence of the natural numbers.) There is a set, denoted \mathbb{N} and called the set of natural numbers, so that the following hold.

1. There is a special element in \mathbb{N}, which we denote by 1.
2. For each $n \in \mathbb{N}$, there is a corresponding element $n' \in \mathbb{N}$, called the successor of n.
3. The element 1 is not the successor of any natural number.
4. Principle of Induction. If $S \subseteq \mathbb{N}$ is such that 1 $\in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.
5. For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.

The above properties are also called the Peano Axioms for the natural numbers.
Proof.
Proof. *(Defining \(\mathbb{N} \).)*
Proof. *(Defining \(\mathbb{N} \)).*
Let \(I \) be the set from the Axiom of Infinity.
Proof. (Defining \(\mathbb{N} \).)
Let \(I \) be the set from the Axiom of Infinity. Let \(1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I \).
Proof. (Defining \mathbb{N}.)

Let I be the set from the Axiom of Infinity. Let

\[1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I. \]

For each $n \in I$, let $n' := n \cup \{n\}$.
Proof. \textit{(Defining \(\mathbb{N}\).)}

Let \(I\) be the set from the Axiom of Infinity. Let
\[1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I.\]
For each \(n \in I\), let \(n' := n \cup \{n\}\).

Call a subset \(S \subseteq I\) a **successor set** iff \(\emptyset \not\in S\), \(1 \in S\) and for all \(n \in S\) we have that \(n' \in S\).
Proof. (Defining \(\mathbb{N} \).)
Let \(I \) be the set from the Axiom of Infinity. Let
\[
1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I.
\]
For each \(n \in I \), let \(n' := n \cup \{n\} \).
Call a subset \(S \subseteq I \) a **successor set** iff \(\emptyset \not\in S \), \(1 \in S \) and for all \(n \in S \) we have that \(n' \in S \). Then \(I \setminus \{\emptyset\} \) is a successor set.
Proof. (Defining \(\mathbb{N} \).)
Let \(I \) be the set from the Axiom of Infinity. Let
\[
1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I.
\]
For each \(n \in I \), let \(n' := n \cup \{n\} \).
Call a subset \(S \subseteq I \) a successor set iff \(\emptyset \notin S \), \(1 \in S \) and for all \(n \in S \) we have that \(n' \in S \). Then \(I \setminus \{\emptyset\} \) is a successor set.
Moreover, all successor sets are subsets of \(I \).
Proof. (Defining \(\mathbb{N} \).)

Let \(I \) be the set from the Axiom of Infinity. Let
\[
1 := \{\emptyset\} = \emptyset \cup \{\emptyset\} \in I.
\]
For each \(n \in I \), let \(n' := n \cup \{n\} \).

Call a subset \(S \subseteq I \) a **successor set** iff \(\emptyset \not\in S \), \(1 \in S \) and for all \(n \in S \) we have that \(n' \in S \). Then \(I \setminus \{\emptyset\} \) is a successor set.

Moreover, all successor sets are subsets of \(I \). Define \(\mathbb{N} := \bigcap \mathcal{S} \) to be the intersection of the set \(\mathcal{S} \) of all successor sets.
Proof of part 1.

There is a special element in \(\mathbb{N} \), which we denote by 1. Every successor set contains 1. Therefore 1 \(\in \bigcap S = \mathbb{N} \), as was to be proved.
Proof of part 1. *(There is a special element in \(\mathbb{N} \), which we denote by 1.)*
Proof of part 1. *(There is a special element in \(\mathbb{N} \), which we denote by 1.)*

Every successor set contains 1.
Proof of part 1. *(There is a special element in \(\mathbb{N} \), which we denote by 1.)*

Every successor set contains 1. Therefore \(1 \in \bigcap \mathcal{S} = \mathbb{N} \), as was to be proved.
Proof of part 2.
Proof of part 2. *(For each \(n \in \mathbb{N} \), there is a corresponding element \(n' \in \mathbb{N} \), called the *successor* of \(n \).)
Proof of part 2. *(For each \(n \in \mathbb{N} \), there is a corresponding element \(n' \in \mathbb{N} \), called the successor of \(n \)).*

Let \(n \in \mathbb{N} \).
Proof of part 2. (For each \(n \in \mathbb{N} \), there is a corresponding element \(n' \in \mathbb{N} \), called the successor of \(n \).)

Let \(n \in \mathbb{N} \). Because \(n \in \mathbb{N} = \bigcap \mathcal{S} \), we conclude that \(n \in S \) for all \(S \in \mathcal{S} \).
Proof of part 2. (For each $n \in \mathbb{N}$, there is a corresponding element $n' \in \mathbb{N}$, called the successor of n.)

Let $n \in \mathbb{N}$. Because $n \in \mathbb{N} = \bigcap S$, we conclude that $n \in S$ for all $S \in \mathcal{S}$. By definition of successor sets, $n' = n \cup \{n\} \in S$ for all $S \in \mathcal{S}$.
Proof of part 2. *(For each \(n \in \mathbb{N} \), there is a corresponding element \(n' \in \mathbb{N} \), called the **successor** of \(n \)).*

Let \(n \in \mathbb{N} \). Because \(n \in \mathbb{N} = \bigcap \mathcal{S} \), we conclude that \(n \in S \) for all \(S \in \mathcal{S} \). By definition of successor sets, \(n' = n \cup \{n\} \in S \) for all \(S \in \mathcal{S} \). Hence \(n' \in \bigcap \mathcal{S} = \mathbb{N} \), as was to be proved.
Proof of part 3.

Suppose for a contradiction that 1 was the successor $1 = x'$ of an $x \in \mathbb{N}$. Then $\{0\} = 1 = x' = x \cup \{x\}$. This implies $x = \{0\}$, but $\{0\} \not\in \mathbb{N}$. We have arrived at a contradiction.
Proof of part 3. *(The element 1 is not the successor of any natural number.)*
Proof of part 3. *(The element 1 is not the successor of any natural number.)*
Suppose for a contradiction that 1 was the successor \(1 = x' \) of an \(x \in \mathbb{N} \).
Proof of part 3. (The element 1 is not the successor of any natural number.)
Suppose for a contradiction that 1 was the successor $1 = x'$ of an $x \in \mathbb{N}$. Then $\{\emptyset\} = 1 = x' = x \cup \{x\}$.
Proof of part 3. *(The element 1 is not the successor of any natural number.)*

Suppose for a contradiction that 1 was the successor $1 = x'$ of an $x \in \mathbb{N}$. Then $\{\emptyset\} = 1 = x' = x \cup \{x\}$. This implies $x = \emptyset$.
Proof of part 3. (The element 1 is not the successor of any natural number.)
Suppose for a contradiction that 1 was the successor $1 = x'$ of an $x \in \mathbb{N}$. Then $\{\emptyset\} = 1 = x' = x \cup \{x\}$. This implies $x = \emptyset$, but $\emptyset \notin \mathbb{N}$.
Proof of part 3. *(The element 1 is not the successor of any natural number.)*

Suppose for a contradiction that 1 was the successor \(1 = x'\) of an \(x \in \mathbb{N}\). Then \(\{\emptyset\} = 1 = x' = x \cup \{x\}\). This implies \(x = \emptyset\), but \(\emptyset \not\in \mathbb{N}\). We have arrived at a contradiction.
Proof of part 4.
Proof of part 4. (If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.)

Proof of part 4. (If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.)

Let $S \subseteq \mathbb{N}$ be so that $1 \in S$ and so that for every $n \in S$ we have that $n' \in S$.
Proof of part 4. (If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.)

Let $S \subseteq \mathbb{N}$ be so that $1 \in S$ and so that for every $n \in S$ we have that $n' \in S$. Because S is a successor set, by definition of \mathbb{N} we conclude $\mathbb{N} \subseteq S$.
Proof of part 4. (If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.)

Let $S \subseteq \mathbb{N}$ be so that $1 \in S$ and so that for every $n \in S$ we have that $n' \in S$. Because S is a successor set, by definition of \mathbb{N} we conclude $\mathbb{N} \subseteq S$. But by definition of S, we also have $S \subseteq \mathbb{N}$.
Proof of part 4. (If $S \subseteq \mathbb{N}$ is such that $1 \in S$ and for each $n \in S$ we also have $n' \in S$, then $S = \mathbb{N}$.)

Let $S \subseteq \mathbb{N}$ be so that $1 \in S$ and so that for every $n \in S$ we have that $n' \in S$. Because S is a successor set, by definition of \mathbb{N} we conclude $\mathbb{N} \subseteq S$. But by definition of S, we also have $S \subseteq \mathbb{N}$. Hence $S = \mathbb{N}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Infinity and The Natural Numbers
Proof of part 5.

We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \).

Let \(S = \{ n \in \mathbb{N} : \forall m \in n : m \subseteq n \} \).

Trivially, \(\{0\} \in S \), that is, \(1 \in S \).

For \(n \in S \) we have \(n' = n \cup \{n\} \).

Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed.

Then \(m \cup \{m\} = m' = n' = n \cup \{n\} \).

Suppose for a contradiction that \(m \neq n \).

Then \(\{n\} \neq \{m\} \), which implies \(n \in m \) and \(m \in n \).

By the above, \(n \subseteq m \) and \(m \subseteq n \), that is, \(m = n \), contradiction.
Proof of part 5. *(For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).)*
Proof of part 5. (*For all* \(m, n \in \mathbb{N} \) *if* \(m' = n' \), *then* \(m = n \).) We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \).
Proof of part 5. (For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}$.

Trivially, $\{0\} \in S$, that is, $1 \in S$.

For $n \in S$ we have $n' = n \cup \{n\}$.

Hence, if $m \in n'$, then $m = n \subseteq n'$ or $m \in n$, which means $m \subseteq n \subseteq n'$.

Now let $m, n \in \mathbb{N}$ with $m' = n'$ be arbitrary but fixed.

Then $m \cup \{m\} = m' = n' = n \cup \{n\}$.

Suppose for a contradiction that $m \neq n$.

Then $\{n\} \neq \{m\}$, which implies $n \in m$ and $m \in n$.

By the above, $n \subseteq m$ and $m \subseteq n$, that is, $m = n$, contradiction.
Proof of part 5. (For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}$. Trivially, $\{\emptyset\} \in S$, that is, $1 \in S$.
Proof of part 5. *(For all \(m,n \in \mathbb{N}\) if \(m' = n'\), then \(m = n\).)*

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\).
Proof of part 5. (For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{ n \in \mathbb{N} : \forall m \in n : m \subseteq n \}$. Trivially, \{0\} \in S, that is, 1 \in S. For $n \in S$ we have $n' = n \cup \{n\}$. Hence, if $m \in n'$, then $m = n \subseteq n'$.
Proof of part 5. (For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).)
We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \).
Proof of part 5. (For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{n \in \mathbb{N} : \forall m \in n : m \subseteq n\}$. Trivially, $\{\emptyset\} \in S$, that is, $1 \in S$. For $n \in S$ we have $n' = n \cup \{n\}$. Hence, if $m \in n'$, then $m = n \subseteq n'$ or $m \in n$, which means $m \subseteq n$.
Proof of part 5. (For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).) We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).
Proof of part 5. *(For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).)*
We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed.
Proof of part 5. *(For all \(m, n \in \mathbb{N}\) if \(m' = n'\), then \(m = n\).)*

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\}\)
Proof of part 5. *(For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \)).*

We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : \forall m \in n : m \subseteq n \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{ n \} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed. Then \(m \cup \{ m \} = m' \).
Proof of part 5. (For all \(m, n \in \mathbb{N}\) if \(m' = n'\), then \(m = n\).) We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n'\).
Proof of part 5. (For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).)

We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\} \).
Proof of part 5. (For all $m, n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{ n \in \mathbb{N} : \forall m \in n : m \subseteq n \}$. Trivially, $\{\emptyset\} \in S$, that is, $1 \in S$. For $n \in S$ we have $n' = n \cup \{n\}$. Hence, if $m \in n'$, then $m = n \subseteq n'$ or $m \in n$, which means $m \subseteq n \subseteq n'$.

Now let $m, n \in \mathbb{N}$ with $m' = n'$ be arbitrary but fixed. Then $m \cup \{m\} = m' = n' = n \cup \{n\}$. Suppose for a contradiction that $m \neq n$.
Proof of part 5. \((\text{For all } m, n \in \mathbb{N} \text{ if } m' = n', \text{ then } m = n.)\)

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : \forall m \in n : m \subseteq n\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\}\). Suppose for a contradiction that \(m \neq n\). Then \(\{n\} \neq \{m\}\).
Proof of part 5. \((For\ all\ m, n \in \mathbb{N}\ if\ m' = n',\ then\ m = n.\)\)

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : \forall m \in n : m \subseteq n\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\}\). Suppose for a contradiction that \(m \neq n\). Then \(\{n\} \neq \{m\}\), which implies \(n \in m\) and \(m \in n\).
Proof of part 5. (For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \).)
We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\} \). Suppose for a contradiction that \(m \neq n \). Then \(\{n\} \neq \{m\} \), which implies \(n \in m \) and \(m \in n \). By the above, \(n \subseteq m \).
Proof of part 5. (For all $m,n \in \mathbb{N}$ if $m' = n'$, then $m = n$.)

We first use part 4 to prove that every element of $n \in \mathbb{N}$ is a subset of n. Let $S := \{ n \in \mathbb{N} : \forall m \in n : m \subseteq n \}$. Trivially, $\{\emptyset\} \in S$, that is, $1 \in S$. For $n \in S$ we have $n' = n \cup \{n\}$. Hence, if $m \in n'$, then $m = n \subseteq n'$ or $m \in n$, which means $m \subseteq n \subseteq n'$.

Now let $m,n \in \mathbb{N}$ with $m' = n'$ be arbitrary but fixed. Then $m \cup \{m\} = m' = n' = n \cup \{n\}$. Suppose for a contradiction that $m \neq n$. Then $\{n\} \neq \{m\}$, which implies $n \in m$ and $m \in n$. By the above, $n \subseteq m$ and $m \subseteq n$.
Proof of part 5. *(For all \(m, n \in \mathbb{N}\) if \(m' = n'\), then \(m = n\).)*

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\}\). Suppose for a contradiction that \(m \neq n\). Then \(\{n\} \neq \{m\}\), which implies \(n \in m\) and \(m \in n\). By the above, \(n \subseteq m\) and \(m \subseteq n\), that is, \(m = n\).
Proof of part 5. \((For \ all \ m, n \in \mathbb{N} \ if \ m' = n', \ then \ m = n.\)\)

We first use part 4 to prove that every element of \(n \in \mathbb{N}\) is a subset of \(n\). Let \(S := \{n \in \mathbb{N} : [\forall m \in n : m \subseteq n]\}\). Trivially, \(\{\emptyset\} \in S\), that is, \(1 \in S\). For \(n \in S\) we have \(n' = n \cup \{n\}\). Hence, if \(m \in n'\), then \(m = n \subseteq n'\) or \(m \in n\), which means \(m \subseteq n \subseteq n'\).

Now let \(m, n \in \mathbb{N}\) with \(m' = n'\) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\}\). Suppose for a contradiction that \(m \neq n\). Then \(\{n\} \neq \{m\}\), which implies \(n \in m\) and \(m \in n\). By the above, \(n \subseteq m\) and \(m \subseteq n\), that is, \(m = n\), contradiction.
Proof of part 5. *(For all \(m, n \in \mathbb{N} \) if \(m' = n' \), then \(m = n \)).*

We first use part 4 to prove that every element of \(n \in \mathbb{N} \) is a subset of \(n \). Let \(S := \{ n \in \mathbb{N} : [\forall m \in n : m \subseteq n] \} \). Trivially, \(\{\emptyset\} \in S \), that is, \(1 \in S \). For \(n \in S \) we have \(n' = n \cup \{n\} \). Hence, if \(m \in n' \), then \(m = n \subseteq n' \) or \(m \in n \), which means \(m \subseteq n \subseteq n' \).

Now let \(m, n \in \mathbb{N} \) with \(m' = n' \) be arbitrary but fixed. Then \(m \cup \{m\} = m' = n' = n \cup \{n\} \). Suppose for a contradiction that \(m \neq n \). Then \(\{n\} \neq \{m\} \), which implies \(n \in m \) and \(m \in n \). By the above, \(n \subseteq m \) and \(m \subseteq n \), that is, \(m = n \), contradiction. \(\blacksquare \)
Different Levels of Axiomatic Systems
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
2. But *axioms* usually are *given*
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
2. But *axioms* usually are *given*, not *proved*.
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
2. But axioms usually are given, not proved.
3. The Peano Axioms are a nice intermediate stage in our construction of the number systems from set theory.
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
2. But *axioms* usually are *given*, not *proved*.
3. The Peano Axioms are a nice intermediate stage in our construction of the number systems from set theory.
4. Using them as the basis for further study allows us to worry less about sets.
Different Levels of Axiomatic Systems

1. The Peano Axioms are derived from the axioms of set theory.
2. But axioms usually are given, not proved.
3. The Peano Axioms are a nice intermediate stage in our construction of the number systems from set theory.
4. Using them as the basis for further study allows us to worry less about sets.
5. Historically, the Peano Axioms were found before Russell’s Paradox and before the Zermelo-Fraenkel axioms for set theory.
Different Levels of Axiomatic Systems
Different Levels of Axiomatic Systems

6. Compare with driving a car:
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system
6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions)
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic.
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).

7. We cannot (and should not) think of all the engine functions as we drive (too distracting).
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).
7. We cannot (and should not) think of all the engine functions as we drive (too distracting).
8. The two still connect: Engine function allows us to drive...
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).

7. We cannot (and should not) think of all the engine functions as we drive (too distracting).

8. The two still connect: Engine function allows us to drive, and some knowledge about the function of the engine can be helpful.
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).

7. We cannot (and should not) think of all the engine functions as we drive (too distracting).

8. The two still connect: Engine function allows us to drive, and some knowledge about the function of the engine can be helpful.

9. For example, to start, the engine must turn over.
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).

7. We cannot (and should not) think of all the engine functions as we drive (too distracting).

8. The two still connect: Engine function allows us to drive, and some knowledge about the function of the engine can be helpful.

9. For example, to start, the engine must turn over. The handcrank from the really old movies has been replaced with an electric motor that cranks as we turn the key.
Different Levels of Axiomatic Systems

6. Compare with driving a car: A driver has to deal with a different axiomatic system (driving instructions) than a mechanic (engine function).

7. We cannot (and should not) think of all the engine functions as we drive (too distracting).

8. The two still connect: Engine function allows us to drive, and some knowledge about the function of the engine can be helpful.

9. For example, to start, the engine must turn over. The handcrank from the really old movies has been replaced with an electric motor that cranks as we turn the key. Knowing that we need the engine to turn over is helpful when starting a car with electrical problems.