The Axiom of Choice

Bernd Schröder
Why Do We Need More Axioms?
Why Do We Need More Axioms?

1. The final three axioms we discuss could be motivated by the desire to “count past infinity” ...
Why Do We Need More Axioms?

1. The final three axioms we discuss could be motivated by the desire to “count past infinity” ...
2. ... and by the desire to have “standard sizes” for infinite sets.
Why Do We Need More Axioms?

1. The final three axioms we discuss could be motivated by the desire to “count past infinity” ...
2. ... and by the desire to have “standard sizes” for infinite sets.
3. Other than that, the Axiom of Choice, in its “Zorn’s Lemma” incarnation is used every so often throughout mathematics.
Axiom.
Axiom. The Axiom of Choice. Let \(\{A_i\}_{i \in I} \) be an indexed family of sets.
Axiom. The Axiom of Choice. Let \(\{A_i\}_{i \in I} \) be an indexed family of sets. Then there is a function \(f : I \rightarrow \bigcup_{i \in I} A_i \) so that \(f(i) \in A_i \) for all \(i \in I \).
Axiom. The Axiom of Choice. Let $\{A_i\}_{i \in I}$ be an indexed family of sets. Then there is a function $f : I \rightarrow \bigcup_{i \in I} A_i$ so that $f(i) \in A_i$ for all $i \in I$. The function is also called a choice function.
Axiom. The Axiom of Choice. Let $\{A_i\}_{i \in I}$ be an indexed family of sets. Then there is a function $f : I \to \bigcup_{i \in I} A_i$ so that $f(i) \in A_i$ for all $i \in I$. The function is also called a choice function.

Definition.
Axiom. The Axiom of Choice. Let \(\{A_i\}_{i \in I} \) be an indexed family of sets. Then there is a function \(f : I \rightarrow \bigcup_{i \in I} A_i \) so that \(f(i) \in A_i \) for all \(i \in I \). The function is also called a **choice function**.

Definition. Let \(\{A_i\}_{i \in I} \) be a family of sets.
Axiom. The Axiom of Choice. Let \(\{A_i\}_{i \in I} \) be an indexed family of sets. Then there is a function \(f : I \to \bigcup_{i \in I} A_i \) so that \(f(i) \in A_i \) for all \(i \in I \). The function is also called a choice function.

Definition. Let \(\{A_i\}_{i \in I} \) be a family of sets. The product \(\prod_{i \in I} A_i \) of the \(A_i \) is defined as the set of all functions \(f : I \to \bigcup_{i \in I} A_i \) with \(f(i) \in A_i \) for all \(i \in I \).
Theorem.
Theorem. *Intersection and union are completely distributive.*
Theorem. Intersection and union are completely distributive.
Let \(\{J_i\}_{i \in I} \) be a family of index sets and let \(\{C_{ij}\}_{i \in I, j \in J_i} \) be a family of sets.
Theorem. Intersection and union are completely distributive.
Let \(\{J_i\}_{i \in I} \) be a family of index sets and let \(\{C_{ij}\}_{i \in I, j \in J_i} \) be a family of sets. Then the following hold.
Theorem. Intersection and union are completely distributive. Let \(\{J_i\}_{i \in I} \) be a family of index sets and let \(\{C_{ij}\}_{i \in I, j \in J_i} \) be a family of sets. Then the following hold.

1. \(\bigcap_{i \in I} \bigcup_{j \in J_i} C_{ij} = \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)} \).
Theorem. *Intersection and union are completely distributive.*

Let \(\{J_i\}_{i \in I} \) be a family of index sets and let \(\{C_{ij}\}_{i \in I, j \in J_i} \) be a family of sets. Then the following hold.

1. \[
\bigcap_{i \in I} \bigcup_{j \in J_i} C_{ij} = \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]

2. \[
\bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} = \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)}.
\]
Proof (part 1).
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I} C_{ij} \).
Proof (part 1).

Let $x \in \bigcap \bigcup \limits_{i \in I} \bigcup \limits_{j \in J_i} C_{ij}$. Then for every $i \in I$ there is a j_i with $x \in C_{ij_i}$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \).
Proof (part 1).

Let $x \in \bigcap \bigcup_{i \in I \atop j \in J_i} C_{ij}$. Then for every $i \in I$ there is a j_i with $x \in C_{ij_i}$.

For each $i \in I$ set $g(i) := j_i$. Then

$x \in \bigcap \bigcup_{i \in I \atop j \in J_i} C_{ij}$.
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \). Then

\[
x \in \bigcap_{i \in I} C_{ig(i)}
\]
Proof (part 1).
Let $x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij}$. Then for every $i \in I$ there is a j_i with $x \in C_{ij_i}$.

For each $i \in I$ set $g(i) := j_i$. Then

$x \in \bigcap_{i \in I} C_{ig(i)} \subseteq \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}$.

Conversely, let $x \in \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}$.
Then there is a choice function $f \in \prod_{i \in I} J_i$ so that $x \in C_{if(i)}$ for all $i \in I$.

But then $x \in \bigcup_{j \in J_i} C_{ij}$ for every $i \in I$.

Hence $x \in \bigcap_{i \in I} \bigcup_{j \in J_i} C_{ij}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \). Then
\[
x \in \bigcap_{i \in I} C_{ig(i)} \subseteq \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]
Conversely, let
\[
x \in \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \). Then

\[
\bigcap_{i \in I} C_{ig(i)} \subseteq \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]

Conversely, let \(x \in \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)} \). Then there is a choice function \(f \in \prod_{i \in I} J_i \) so that \(x \in C_{if(i)} \) for all \(i \in I \).
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \). Then

\[
\bar{x} \in \bigcap_{i \in I} C_{ig(i)} \subseteq \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]

Conversely, let \(x \in \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)} \). Then there is a choice function \(f \in \prod_{i \in I} J_i \) so that \(x \in C_{if(i)} \) for all \(i \in I \). But then \(x \in \bigcup_{j \in J_i} C_{ij} \) for every \(i \in I \).
Proof (part 1).

Let \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \) with \(x \in C_{ij_i} \).

For each \(i \in I \) set \(g(i) := j_i \). Then

\[
x \in \bigcap_{i \in I} C_{ig(i)} \subseteq \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)}.
\]

Conversely, let \(x \in \bigcup_{f \in \prod_{i \in I} J_i} \bigcap_{i \in I} C_{if(i)} \). Then there is a choice function \(f \in \prod_{i \in I} J_i \) so that \(x \in C_{if(i)} \) for all \(i \in I \). But then \(x \in \bigcup_{j \in J_i} C_{ij} \) for every \(i \in I \).

Hence \(x \in \bigcap \bigcup_{i \in I, j \in J_i} C_{ij} \).
Proof (part 2).

Let $x \in \bigcup_{i \in I} \bigcap_{j \in J} i C_{ij}$.

Then there is an $i_0 \in I$ so that $x \in \bigcap_{j \in J} i_0 C_{i_0 j}$.

For every choice function $f \in \prod_{i \in I} J$ we have $x \in \bigcap_{j \in J} i_0 C_{i_0 j} \subseteq C_{i_0 f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i_0)}$.

Therefore $x \in \bigcap_{f \in \prod_{i \in I} J} \bigcup_{i \in I} C_{if(i_0)}$.

For the reverse inclusion, let $x \not\in \bigcup_{i \in I} \bigcap_{j \in J} i C_{ij}$.

Then for every $i \in I$ there is a $j_i \in J$ so that $x \not\in C_{ij_i}$.

Define $g \in \prod_{i \in I} J$ by $g(i) = j_i$.

Then $x \not\in \bigcup_{i \in I} C_{ig(i)}$ and hence $x \not\in \bigcap_{f \in \prod_{i \in I} J} \bigcup_{i \in I} C_{if(i)}$.
Proof (part 2).

Let \(x \in \bigcup \bigcap_{i \in I} \bigcap_{j \in J_i} C_{ij} \).
Proof (part 2).

Let $x \in \bigcup \bigcap_{i \in I} \bigcap_{j \in J_i} C_{ij}$. Then there is an $i_0 \in I$ so that $x \in \bigcap_{j \in J_{i_0}} C_{i_0j}$.
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[x \]
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j}
\]
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)}
\]
Proof (part 2).

Let \(x \in \bigcup \bigcap_{i \in I, j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.
\]
Proof (part 2).

Let \(x \in \bigcup \bigcap_{i \in I, j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0 j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0 j} \subseteq C_{i_0 f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.
\]

Therefore \(x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)} \).
Proof (part 2).

Let \(x \in \bigcup \bigcap_{i \in I} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.\]

Therefore \(x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)} \).

For the reverse inclusion, let \(x \not\in \bigcup \bigcap_{i \in I} C_{ij} \).
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
 x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.
\]

Therefore \(x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)} \).

For the reverse inclusion, let \(x \notin \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then for every \(i \in I \) there is a \(j_i \in J_i \) so that \(x \notin C_{ij_i} \).
Proof (part 2).

Let $x \in \bigcup \bigcap_{i \in I} C_{ij}$. Then there is an $i_0 \in I$ so that $x \in \bigcap_{j \in J_{i_0}} C_{i_0j}$.

For every choice function $f \in \prod_{i \in I} J_i$ we have

$$x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.$$ Therefore $x \in \bigcap_{f \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)}$.

For the reverse inclusion, let $x \not\in \bigcup \bigcap_{i \in I} C_{ij}$. Then for every $i \in I$ there is a $j_i \in J_i$ so that $x \not\in C_{ij_i}$. Define $g \in \prod_{i \in I} J_i$ by $g(i) := j_i$.
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij}. \) Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j}. \)

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.\]

Therefore \(x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)}. \)

For the reverse inclusion, let \(x \notin \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij}. \) Then for every \(i \in I \)

there is a \(j_i \in J_i \) so that \(x \notin C_{ij_i}. \) Define \(g \in \prod_{i \in I} J_i \) by \(g(i) := j_i. \)

Then \(x \notin \bigcup_{i \in I} C_{ig(i)} \)
Proof (part 2).

Let $x \in \bigcup \bigcap_{i \in I, j \in J_i} C_{ij}$. Then there is an $i_0 \in I$ so that $x \in \bigcap_{j \in J_{i_0}} C_{i_0j}$.

For every choice function $f \in \prod_{i \in I} J_i$ we have

$$x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{if(i)}.$$ Therefore $x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)}$.

For the reverse inclusion, let $x \notin \bigcup \bigcap_{i \in I, j \in J_i} C_{ij}$. Then for every $i \in I$ there is a $j_i \in J_i$ so that $x \notin C_{ij_i}$. Define $g \in \prod_{i \in I} J_i$ by $g(i) := j_i$.

Then $x \notin \bigcup_{i \in I} C_{ig(i)}$ and hence $x \notin \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{if(i)}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
Proof (part 2).

Let \(x \in \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then there is an \(i_0 \in I \) so that \(x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \).

For every choice function \(f \in \prod_{i \in I} J_i \) we have

\[
x \in \bigcap_{j \in J_{i_0}} C_{i_0j} \subseteq C_{i_0f(i_0)} \subseteq \bigcup_{i \in I} C_{i_f(i)}. \text{ Therefore } x \in \bigcap_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{i_f(i)}.
\]

For the reverse inclusion, let \(x \notin \bigcup_{i \in I} \bigcap_{j \in J_i} C_{ij} \). Then for every \(i \in I \)

there is a \(j_i \in J_i \) so that \(x \notin C_{ij_i} \). Define \(g \in \prod_{i \in I} J_i \) by \(g(i) := j_i \).

Then \(x \notin \bigcup_{i \in I} C_{ig(i)} \) and hence \(x \notin \bigcup_{f \in \prod_{i \in I} J_i} \bigcup_{i \in I} C_{i_f(i)} \). \(\square \)
Definition.
Definition. Let X be an ordered set.
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**.

Lemma. Let X be a set, and let $Z \subseteq P(X)$ be a nonempty set of subsets of X, ordered by set containment \subseteq and with the following properties.

1. For every set $C \in Z$ we have that every subset of C is an element of Z.
2. For every chain (with respect to set containment) $C \subseteq Z$, the union $\bigcup C$ of C is an element of Z.

Then Z has a maximal element (with respect to set containment).
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a **maximal element** of X.
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a **maximal element** of X.

Lemma.
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a **maximal element** of X.

Lemma. Let X be a set, and let $Z \subseteq \mathcal{P}(X)$ be a nonempty set of subsets of X, ordered by set containment \subseteq and with the following properties.

1. For every set $C \in Z$ we have that every subset of C is an element of Z.
2. For every chain (with respect to set containment) $C \subseteq Z$, the union $\bigcup C$ of C is an element of Z.

Then Z has a maximal element (with respect to set containment).
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a **maximal element** of X.

Lemma. Let X be a set, and let $Z \subseteq \mathcal{P}(X)$ be a nonempty set of subsets of X, ordered by set containment \subseteq and with the following properties.

1. For every set $C \in Z$ we have that every subset of C is an element of Z.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a chain. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a maximal element of X.

Lemma. Let X be a set, and let $Z \subseteq \mathcal{P}(X)$ be a nonempty set of subsets of X, ordered by set containment \subseteq and with the following properties.

1. For every set $C \in Z$ we have that every subset of C is an element of Z.
2. For every chain (with respect to set containment) $\mathcal{C} \subseteq Z$, the union $\bigcup \mathcal{C}$ of \mathcal{C} is an element of Z.
Definition. Let X be an ordered set. A totally ordered subset C of X is also called a **chain**. An element $m \in X$ so that for all $x \in X$ we have that $m \leq x$ implies $m = x$ is called a **maximal element** of X.

Lemma. Let X be a set, and let $Z \subseteq \mathcal{P}(X)$ be a nonempty set of subsets of X, ordered by set containment \subseteq and with the following properties.

1. **For every set** $C \in Z$ **we have that every subset of** C **is an element of** Z.
2. **For every chain** (with respect to set containment) $\mathcal{C} \subseteq Z$, the union $\bigcup \mathcal{C}$ of \mathcal{C} is an element of Z.

Then Z has a maximal element (with respect to set containment).
Proof (initial setup).
Proof (initial setup). Consider the indexed family \(\{i\}_{i \in \mathcal{P}(X) \setminus \{\emptyset\}} \).
Proof (initial setup). Consider the indexed family \(\{i\}_{i \in \mathcal{P}(X) \setminus \{\emptyset\}} \). The union of this family is \(X \).
Proof (initial setup). Consider the indexed family \(\{ i \}_{i \in \mathcal{P}(X) \setminus \{ \emptyset \}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{ \emptyset \} \rightarrow X \).
Proof (initial setup). Consider the indexed family \(\{ i \}_{i \in \mathcal{P}(X) \setminus \{ \emptyset \}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{ \emptyset \} \to X \) so that \(f(A) \in A \) holds for all \(A \in \mathcal{P}(X) \setminus \{ \emptyset \} \).
Proof (initial setup). Consider the indexed family \(\{i\}_{i \in \mathcal{P}(X) \setminus \{\emptyset\}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{\emptyset\} \to X \) so that \(f(A) \in A \) holds for all \(A \in \mathcal{P}(X) \setminus \{\emptyset\} \).

For each \(C \in Z \), define the set \(E_C := \{x \in X \setminus C : C \cup \{x\} \in Z\} \)
Proof (initial setup). Consider the indexed family \(\{ i \}_{i \in P(X) \setminus \{ \emptyset \}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : P(X) \setminus \{ \emptyset \} \rightarrow X \) so that \(f(A) \in A \) holds for all \(A \in P(X) \setminus \{ \emptyset \} \).

For each \(C \in Z \), define the set \(E_C := \{ x \in X \setminus C : C \cup \{ x \} \in Z \} \) and let

\[
g(C) := \begin{cases}
 C \cup \{ f(E_C) \}; & \text{if } E_C \neq \emptyset, \\
 C; & \text{if } E_C = \emptyset.
\end{cases}
\]
Proof (initial setup). Consider the indexed family \(\{ i \} \in \mathcal{P}(X) \setminus \{ \emptyset \} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{ \emptyset \} \to X \) so that \(f(A) \in A \) holds for all \(A \in \mathcal{P}(X) \setminus \{ \emptyset \} \).

For each \(C \in Z \), define the set \(E_C := \{ x \in X \setminus C : C \cup \{ x \} \in Z \} \) and let

\[
g(C) := \begin{cases}
 C \cup \{ f(E_C) \}; & \text{if } E_C \neq \emptyset, \\
 C; & \text{if } E_C = \emptyset.
\end{cases}
\]

If \(M \in Z \) satisfies \(g(M) = M \), then there is no element \(x \in X \setminus M \) so that \(M \cup \{ x \} \in Z \).
Proof (initial setup). Consider the indexed family \(\{i\}_{i \in \mathcal{P}(X) \setminus \{\emptyset\}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{\emptyset\} \to X \) so that \(f(A) \in A \) holds for all \(A \in \mathcal{P}(X) \setminus \{\emptyset\} \).

For each \(C \in Z \), define the set \(E_C := \{ x \in X \setminus C : C \cup \{x\} \in Z \} \) and let

\[
g(C) := \begin{cases}
 C \cup \{f(E_C)\}; & \text{if } E_C \neq \emptyset, \\
 C; & \text{if } E_C = \emptyset.
\end{cases}
\]

If \(M \in Z \) satisfies \(g(M) = M \), then there is no element \(x \in X \setminus M \) so that \(M \cup \{x\} \in Z \), which means that \(M \) is maximal in \(Z \).
Proof (initial setup). Consider the indexed family \(\{i\}_{i \in \mathcal{P}(X) \setminus \{\emptyset\}} \). The union of this family is \(X \). By the Axiom of Choice, there is a choice function \(f : \mathcal{P}(X) \setminus \{\emptyset\} \to X \) so that \(f(A) \in A \) holds for all \(A \in \mathcal{P}(X) \setminus \{\emptyset\} \).

For each \(C \in Z \), define the set \(E_C := \{ x \in X \setminus C : C \cup \{x\} \in Z \} \) and let

\[
g(C) := \begin{cases}
C \cup \{f(E_C)\} ; & \text{if } E_C \neq \emptyset , \\
C ; & \text{if } E_C = \emptyset .
\end{cases}
\]

If \(M \in Z \) satisfies \(g(M) = M \), then there is no element \(x \in X \setminus M \) so that \(M \cup \{x\} \in Z \), which means that \(M \) is maximal in \(Z \). The proof will be done once we find an \(M \in Z \) with \(g(M) = M \).
Proof (towers).
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. 0 ∈ T, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z. Then T_0 is not empty, because 0 ∈ T_0. Call an element $C \in T_0$ comparable iff for all $A \in T_0$ we have $A \subseteq C$ or $C \subseteq A$. First note that, clearly, 0 is a comparable set.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z. Then T_0 is not empty, because $\emptyset \in T_0$. Call an element $C \in T_0$ comparable iff for all $A \in T_0$ we have $A \subseteq C$ or $C \subseteq A$. First note that, clearly, \emptyset is a comparable set.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $\mathcal{C} \subseteq T$ is a chain in T, then $\bigcup \mathcal{C} \in T$.

The set Z contains at least one tower, because Z itself is a tower.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z. Then T_0 is not empty, because $\emptyset \in T_0$.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $C \subseteq T$ is a chain in T, then $\bigcup C \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z. Then T_0 is not empty, because $\emptyset \in T_0$.

Call an element $C \in T_0$ comparable iff for all $A \in T_0$ we have $A \subseteq C$ or $C \subseteq A$.
Proof (towers). A subset $T \subseteq Z$ will be called a tower iff

1. $\emptyset \in T$, and
2. If $C \in T$, then $g(C) \in T$, and
3. If $\mathcal{C} \subseteq T$ is a chain in T, then $\bigcup \mathcal{C} \in T$.

The set Z contains at least one tower, because Z itself is a tower. Moreover, the intersection of any set of towers is a tower, too. Let T_0 be the intersection of all towers that are contained in Z. Then T_0 is not empty, because $\emptyset \in T_0$.

Call an element $C \in T_0$ comparable iff for all $A \in T_0$ we have $A \subseteq C$ or $C \subseteq A$. First note that, clearly, \emptyset is a comparable set.
Proof (C comparable implies $g(C)$ comparable).
Proof \((C \text{ comparable implies } g(C) \text{ comparable})\). Let \(C \in T_0\) be a fixed comparable set.
Proof (C comparable implies g(C) comparable). Let C ∈ T₀ be a fixed comparable set. Consider the set

\[U := \{ A \in T₀ : A \subseteq C \text{ or } g(C) \subseteq A \} . \]
Proof (\(C\) comparable implies \(g(C)\) comparable). Let \(C \in T_0\) be a fixed comparable set. Consider the set \(U := \{A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A\}\). We will prove that \(U\) is a tower.
Proof (*C* comparable implies *g*(*)C*) comparable). Let *C* ∈ *T*₀ be a fixed comparable set. Consider the set

\[U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \} \]

We will prove that *U* is a tower, which implies that *U* = *T*₀.
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set
\[
U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}.
\]
We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable.
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set
\[U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \} . \]
We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \).
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set

\[
U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}.
\]

We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \). Now let \(A \in U \).
Proof \((C\text{ comparable implies }g(C)\text{ comparable})\). Let \(C \in T_0\) be a fixed comparable set. Consider the set
\[U := \{A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A\} .\]
We will prove that \(U\) is a tower, which implies that \(U = T_0\), which implies that \(g(C)\) is comparable. Clearly, \(\emptyset \in U\). Now let \(A \in U\). Because \(C\) is comparable, we have \(A = C\) or \(A \subset C\) or \(C \subset A\).
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set
\[
U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}.
\]
We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \). Now let \(A \in U \). Because \(C \) is comparable, we have \(A = C \) or \(A \subset C \) or \(C \subset A \). In case \(A = C \), we have \(g(A) = g(C) \supseteq g(C) \), which means \(g(A) \in U \).
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set \(U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \} \). We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \). Now let \(A \in U \). Because \(C \) is comparable, we have \(A = C \) or \(A \subset C \) or \(C \subset A \). In case \(A = C \), we have \(g(A) = g(C) \supseteq g(C) \), which means \(g(A) \in U \). In case \(A \subset C \), because \(C \) is comparable, \(g(A) \subseteq C \) or \(C \subset g(A) \).
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set
\[
U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}.
\]
We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \). Now let \(A \in U \). Because \(C \) is comparable, we have \(A = C \) or \(A \subset C \) or \(C \subset A \). In case \(A = C \), we have \(g(A) = g(C) \supseteq g(C) \), which means \(g(A) \in U \). In case \(A \subset C \), because \(C \) is comparable, \(g(A) \subseteq C \) or \(C \subset g(A) \). Strict containment \(C \subset g(A) \) would mean (by \(A \subset C \) that \(C \) has at least one more element than \(A \).
Proof (C comparable implies g(C) comparable). Let $C \in T_0$ be a fixed comparable set. Consider the set $U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}$. We will prove that U is a tower, which implies that $U = T_0$, which implies that $g(C)$ is comparable. Clearly, $\emptyset \in U$. Now let $A \in U$. Because C is comparable, we have $A = C$ or $A \subset C$ or $C \subset A$. In case $A = C$, we have $g(A) = g(C) \supseteq g(C)$, which means $g(A) \in U$. In case $A \subset C$, because C is comparable, $g(A) \subseteq C$ or $C \subset g(A)$. Strict containment $C \subset g(A)$ would mean (by $A \subset C$) that C has at least one more element than A and $g(A)$ has at least one more element than C.
Proof (C comparable implies \(g(C) \) comparable). Let \(C \in T_0 \) be a fixed comparable set. Consider the set
\[
U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}.
\]
We will prove that \(U \) is a tower, which implies that \(U = T_0 \), which implies that \(g(C) \) is comparable. Clearly, \(\emptyset \in U \). Now let \(A \in U \). Because \(C \) is comparable, we have \(A = C \) or \(A \subset C \) or \(C \subset A \). In case \(A = C \), we have \(g(A) = g(C) \supseteq g(C) \), which means \(g(A) \in U \). In case \(A \subset C \), because \(C \) is comparable, \(g(A) \subseteq C \) or \(C \subset g(A) \). Strict containment \(C \subset g(A) \) would mean (by \(A \subset C \)) that \(C \) has at least one more element than \(A \) and \(g(A) \) has at least one more element than \(C \), which is impossible.
Proof (C comparable implies $g(C)$ comparable). Let $C \in T_0$ be a fixed comparable set. Consider the set $U := \{ A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A \}$. We will prove that U is a tower, which implies that $U = T_0$, which implies that $g(C)$ is comparable. Clearly, $\emptyset \in U$. Now let $A \in U$. Because C is comparable, we have $A = C$ or $A \subset C$ or $C \subset A$. In case $A = C$, we have $g(A) = g(C) \supseteq g(C)$, which means $g(A) \in U$. In case $A \subset C$, because C is comparable, $g(A) \subseteq C$ or $C \subset g(A)$. Strict containment $C \subset g(A)$ would mean (by $A \subset C$) that C has at least one more element than A and $g(A)$ has at least one more element than C, which is impossible. Thus, in case $A \subset C$ we must have $g(A) \subseteq C$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
Proof \((C \text{ comparable implies } g(C) \text{ comparable})\). Let \(C \in T_0\) be a fixed comparable set. Consider the set \(U := \{A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A\}\). We will prove that \(U\) is a tower, which implies that \(U = T_0\), which implies that \(g(C)\) is comparable. Clearly, \(\emptyset \in U\). Now let \(A \in U\). Because \(C\) is comparable, we have \(A = C\) or \(A \subset C\) or \(C \subset A\). In case \(A = C\), we have \(g(A) = g(C) \supseteq g(C)\), which means \(g(A) \in U\). In case \(A \subset C\), because \(C\) is comparable, \(g(A) \subseteq C\) or \(C \subset g(A)\). Strict containment \(C \subset g(A)\) would mean (by \(A \subset C\)) that \(C\) has at least one more element than \(A\) and \(g(A)\) has at least one more element than \(C\), which is impossible. Thus, in case \(A \subset C\) we must have \(g(A) \subseteq C\), which means \(g(A) \in U\).
Proof (\(C\) comparable implies \(g(C)\) comparable). Let \(C \in T_0\) be a fixed comparable set. Consider the set
\[
U := \{A \in T_0 : A \subseteq C \text{ or } g(C) \subseteq A\}.
\]
We will prove that \(U\) is a tower, which implies that \(U = T_0\), which implies that \(g(C)\) is comparable. Clearly, \(\emptyset \in U\). Now let \(A \in U\). Because \(C\) is comparable, we have \(A = C\) or \(A \subset C\) or \(C \subset A\). In case \(A = C\), we have \(g(A) = g(C) \supseteq g(C)\), which means \(g(A) \in U\). In case \(A \subset C\), because \(C\) is comparable, \(g(A) \subseteq C\) or \(C \subset g(A)\). Strict containment \(C \subset g(A)\) would mean (by \(A \subset C\)) that \(C\) has at least one more element than \(A\) and \(g(A)\) has at least one more element than \(C\), which is impossible. Thus, in case \(A \subset C\) we must have \(g(A) \subseteq C\), which means \(g(A) \in U\). In the last case, \(C \subset A\), we note that \(A \not\subset C\).
Proof (C comparable implies g(C) comparable). Let C ∈ T₀ be a fixed comparable set. Consider the set
U := \{A ∈ T₀ : A ⊆ C or g(C) ⊆ A\}. We will prove that U is a tower, which implies that U = T₀, which implies that g(C) is comparable. Clearly, ∅ ∈ U. Now let A ∈ U. Because C is comparable, we have A = C or A ⊂ C or C ⊂ A. In case A = C, we have g(A) = g(C) ⊇ g(C), which means g(A) ∈ U. In case A ⊂ C, because C is comparable, g(A) ⊆ C or C ⊂ g(A). Strict containment C ⊂ g(A) would mean (by A ⊂ C) that C has at least one more element than A and g(A) has at least one more element than C, which is impossible. Thus, in case A ⊂ C we must have g(A) ⊆ C, which means g(A) ∈ U. In the last case, C ⊂ A, we note that A ⊄ C. Thus, by definition of U, g(C) ⊆ A ⊆ g(A) and g(A) ∈ U.
Proof \((C \text{ comparable implies } g(C) \text{ comparable}, \text{ concl.})\).
Proof \((C \text{ comparable implies } g(C) \text{ comparable, concl.})\).
Finally, let \(\mathcal{A} \subseteq U\) be a chain.
Proof (\(C \) comparable implies \(g(C) \) comparable, concl.).

Finally, let \(\mathcal{A} \subseteq U \) be a chain. If \(C \supseteq A \) for all \(A \in \mathcal{A} \), then \(C \supseteq \bigcup \mathcal{A} \) and \(\bigcup \mathcal{A} \in U \).
Proof (C comparable implies $g(C)$ comparable, concl.).

Finally, let $\mathcal{A} \subseteq U$ be a chain. If $C \supseteq A$ for all $A \in \mathcal{A}$, then $C \supseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{A} \in U$. Otherwise, there is an $A \in \mathcal{A}$ so that $C \subset A$.
Proof (\(C\) comparable implies \(g(C)\) comparable, concl.).

Finally, let \(A \subseteq U\) be a chain. If \(C \supseteq A\) for all \(A \in A\), then \(C \supseteq \bigcup A\) and \(\bigcup A \in U\). Otherwise, there is an \(A \in A\) so that \(C \subset A\). But then \(A \nsubseteq C\).
Proof (C comparable implies \(g(C) \) comparable, concl.).
Finally, let \(\mathcal{A} \subseteq U \) be a chain. If \(C \supseteq A \) for all \(A \in \mathcal{A} \), then \(C \supseteq \bigcup \mathcal{A} \) and \(\bigcup \mathcal{A} \in U \). Otherwise, there is an \(A \in \mathcal{A} \) so that \(C \subset A \). But then \(A \not\subset C \), which implies \(g(C) \subseteq A \subseteq \bigcup \mathcal{A} \).
Proof (C comparable implies $g(C)$ comparable, concl.).
Finally, let $A \subseteq U$ be a chain. If $C \supseteq A$ for all $A \in A$, then $C \supseteq \bigcup A$ and $\bigcup A \in U$. Otherwise, there is an $A \in A$ so that $C \subset A$. But then $A \not\subseteq C$, which implies $g(C) \subseteq A \subseteq \bigcup A$ and hence $\bigcup A \in U$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
Proof (\(C\) comparable implies \(g(C)\) comparable, concl.).

Finally, let \(\mathcal{A} \subseteq U\) be a chain. If \(C \supseteq A\) for all \(A \in \mathcal{A}\), then \(C \supseteq \bigcup \mathcal{A}\) and \(\bigcup \mathcal{A} \in U\). Otherwise, there is an \(A \in \mathcal{A}\) so that \(C \subset A\). But then \(A \nsubseteq C\), which implies \(g(C) \subseteq A \subseteq \bigcup \mathcal{A}\) and hence \(\bigcup \mathcal{A} \in U\). Thus \(U \subseteq T_0\) is a tower.
Proof (C comparable implies g(C) comparable, concl.).
Finally, let $\mathcal{A} \subseteq U$ be a chain. If $C \supseteq A$ for all $A \in \mathcal{A}$, then $C \supseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{A} \in U$. Otherwise, there is an $A \in \mathcal{A}$ so that $C \subset A$. But then $A \not\supseteq C$, which implies $g(C) \subseteq A \subseteq \bigcup \mathcal{A}$ and hence $\bigcup \mathcal{A} \in U$. Thus $U \subseteq T_0$ is a tower. By definition of T_0, $T_0 \subseteq U$.
Proof (C comparable implies g(C) comparable, concl.).
Finally, let \(A \subseteq U \) be a chain. If \(C \supseteq A \) for all \(A \in A \), then \(C \supseteq \bigcup A \) and \(\bigcup A \in U \). Otherwise, there is an \(A \in A \) so that \(C \subset A \). But then \(A \not\subseteq C \), which implies \(g(C) \subseteq A \subseteq \bigcup A \) and hence \(\bigcup A \in U \). Thus \(U \subseteq T_0 \) is a tower. By definition of \(T_0 \), \(T_0 \subseteq U \) and hence \(U = T_0 \).
Proof (C comparable implies $g(C)$ comparable, concl.).
Finally, let $\mathcal{A} \subseteq U$ be a chain. If $C \supseteq A$ for all $A \in \mathcal{A}$, then $C \supseteq \bigcup \mathcal{A}$ and $\bigcup \mathcal{A} \in U$. Otherwise, there is an $A \in \mathcal{A}$ so that $C \subset A$. But then $A \not\subseteq C$, which implies $g(C) \subseteq A \subseteq \bigcup \mathcal{A}$ and hence $\bigcup \mathcal{A} \in U$. Thus $U \subseteq T_0$ is a tower. By definition of T_0, $T_0 \subseteq U$ and hence $U = T_0$. Thus for all $A \in T_0$ we have $A \subseteq C \subseteq g(C)$ or $g(C) \subseteq A$.
Proof (C comparable implies \(g(C) \) comparable, concl.).

Finally, let \(\mathcal{A} \subseteq U \) be a chain. If \(C \supseteq A \) for all \(A \in \mathcal{A} \), then \(C \supseteq \bigcup \mathcal{A} \) and \(\bigcup \mathcal{A} \in U \). Otherwise, there is an \(A \in \mathcal{A} \) so that \(C \subset A \). But then \(A \not\subset C \), which implies \(g(C) \subseteq A \subseteq \bigcup \mathcal{A} \) and hence \(\bigcup \mathcal{A} \in U \). Thus \(U \subseteq T_0 \) is a tower. By definition of \(T_0 \), \(T_0 \subseteq U \) and hence \(U = T_0 \). Thus for all \(A \in T_0 \) we have \(A \subseteq C \subseteq g(C) \) or \(g(C) \subseteq A \). So if \(C \in T_0 \) is comparable, then \(g(C) \) is comparable, too.
Proof (existence of maximal elements).
Proof (existence of maximal elements). Let \(\mathcal{C} \subseteq T_0 \) be a chain of comparable elements and let \(A \in T_0 \).
Proof (existence of maximal elements). Let \(\mathcal{C} \subseteq T_0 \) be a chain of comparable elements and let \(A \in T_0 \). If there is a \(C \in \mathcal{C} \) with \(A \subseteq C \), then \(A \subseteq C \subseteq \bigcup \mathcal{C} \).
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$.
Proof (existence of maximal elements). Let \(C \subseteq T_0 \) be a chain of comparable elements and let \(A \in T_0 \). If there is a \(C \in C \) with \(A \subseteq C \), then \(A \subseteq C \subseteq \bigcup C \). Otherwise for all \(C \in C \) we have \(C \subseteq A \), which means \(\bigcup C \subseteq A \). Consequently, if \(C \subseteq T_0 \) is a chain of comparable elements, then the union \(\bigcup C \) is comparable.
Proof (existence of maximal elements). Let \(\mathcal{C} \subseteq T_0 \) be a chain of comparable elements and let \(A \in T_0 \). If there is a \(C \in \mathcal{C} \) with \(A \subseteq C \), then \(A \subseteq C \subseteq \bigcup \mathcal{C} \). Otherwise for all \(C \in \mathcal{C} \) we have \(C \subseteq A \), which means \(\bigcup \mathcal{C} \subseteq A \). Consequently, if \(\mathcal{C} \subseteq T_0 \) is a chain of comparable elements, then the union \(\bigcup \mathcal{C} \) is comparable.

Thus the set of comparable elements in \(T_0 \) is a tower.
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$. Consequently, if $\mathcal{C} \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup \mathcal{C}$ is comparable. Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable.
Proof (existence of maximal elements). Let $C \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in C$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup C$. Otherwise for all $C \in C$ we have $C \subseteq A$, which means $\bigcup C \subseteq A$. Consequently, if $C \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup C$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain.
Proof (existence of maximal elements). Let \(\mathcal{C} \subseteq T_0 \) be a chain of comparable elements and let \(A \in T_0 \). If there is a \(C \in \mathcal{C} \) with \(A \subseteq C \), then \(A \subseteq C \subseteq \bigcup \mathcal{C} \). Otherwise for all \(C \in \mathcal{C} \) we have \(C \subseteq A \), which means \(\bigcup \mathcal{C} \subseteq A \). Consequently, if \(\mathcal{C} \subseteq T_0 \) is a chain of comparable elements, then the union \(\bigcup \mathcal{C} \) is comparable.

Thus the set of comparable elements in \(T_0 \) is a tower. Because \(T_0 \) is the intersection of all towers, every element of \(T_0 \) is comparable. By definition of comparable elements, \(T_0 \) is a chain. Because \(T_0 \) is a tower, we have \(\bigcup T_0 \in T_0 \).
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$. Consequently, if $\mathcal{C} \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup \mathcal{C}$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence

$$ g \left(\bigcup T_0 \right) \in T_0 $$
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$. Consequently, if $\mathcal{C} \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup \mathcal{C}$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence $g \left(\bigcup T_0 \right) \in T_0$, which means that $g \left(\bigcup T_0 \right) \subseteq \bigcup T_0$.
Proof (existence of maximal elements). Let $C \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in C$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup C$. Otherwise for all $C \in C$ we have $C \subseteq A$, which means $\bigcup C \subseteq A$. Consequently, if $C \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup C$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence $g \left(\bigcup T_0 \right) \in T_0$, which means that $g \left(\bigcup T_0 \right) \subseteq \bigcup T_0$. By definition of g, $g \left(\bigcup T_0 \right) \supseteq \bigcup T_0$. Hence $M := \bigcup T_0$ is the desired maximal element.
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$. Consequently, if $\mathcal{C} \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup \mathcal{C}$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence $g \left(\bigcup T_0 \right) \in T_0$, which means that $g \left(\bigcup T_0 \right) \subseteq \bigcup T_0$. By definition of g, $g \left(\bigcup T_0 \right) \supseteq \bigcup T_0$, so $g \left(\bigcup T_0 \right) = \bigcup T_0$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof (existence of maximal elements). Let $\mathcal{C} \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in \mathcal{C}$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup \mathcal{C}$. Otherwise for all $C \in \mathcal{C}$ we have $C \subseteq A$, which means $\bigcup \mathcal{C} \subseteq A$. Consequently, if $\mathcal{C} \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup \mathcal{C}$ is comparable.

Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence $g \left(\bigcup T_0 \right) \in T_0$, which means that $g \left(\bigcup T_0 \right) \subseteq \bigcup T_0$. By definition of g, $g \left(\bigcup T_0 \right) \supseteq \bigcup T_0$, so $g \left(\bigcup T_0 \right) = \bigcup T_0$.

Hence $M := \bigcup T_0$ is the desired maximal element.
Proof (existence of maximal elements). Let $C \subseteq T_0$ be a chain of comparable elements and let $A \in T_0$. If there is a $C \in C$ with $A \subseteq C$, then $A \subseteq C \subseteq \bigcup C$. Otherwise for all $C \in C$ we have $C \subseteq A$, which means $\bigcup C \subseteq A$. Consequently, if $C \subseteq T_0$ is a chain of comparable elements, then the union $\bigcup C$ is comparable.
Thus the set of comparable elements in T_0 is a tower. Because T_0 is the intersection of all towers, every element of T_0 is comparable. By definition of comparable elements, T_0 is a chain. Because T_0 is a tower, we have $\bigcup T_0 \in T_0$. Hence $g \left(\bigcup T_0 \right) \in T_0$, which means that $g \left(\bigcup T_0 \right) \subseteq \bigcup T_0$. By definition of g, $g \left(\bigcup T_0 \right) \supseteq \bigcup T_0$, so $g \left(\bigcup T_0 \right) = \bigcup T_0$. Hence $M := \bigcup T_0$ is the desired maximal element.
Theorem.
Theorem. Zorn’s Lemma.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$. But M is maximal in Z, so $m \in M$.
Theorem. Zorn’s Lemma. Let \(X \) be a nonempty ordered set so that every chain in \(X \) has an upper bound. Then \(X \) has a maximal element.

Proof. Let \(Z \) be the set of all chains in \(X \), ordered by inclusion. If \(C \in Z \), then every subset of \(C \) is in \(Z \), too. Moreover, the union of every chain in \(Z \) is again an element of \(Z \). Hence \(Z \) has a maximal element \(M \) with respect to inclusion. This set \(M \) has an upper bound \(m \) in \(X \), and \(M \cup \{m\} \) is a chain in \(X \), that is, \(M \cup \{m\} \in Z \). But \(M \) is maximal in \(Z \), so \(m \in M \). Now let \(x \in X \) satisfy \(x \geq m \).

Bernd Schröder
Choice Functions
Zorn’s Lemma
Well-Ordering Theorem

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Axiom of Choice
The Axiom of Choice
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$. But M is maximal in Z, so $m \in M$. Now let $x \in X$ satisfy $x \geq m$. Then $M \cup \{x\} \in Z$.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$. But M is maximal in Z, so $m \in M$. Now let $x \in X$ satisfy $x \geq m$. Then $M \cup \{x\} \in Z$. So $x \in M$ and then $m \geq x$, that is, $m = x$.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$. But M is maximal in Z, so $m \in M$. Now let $x \in X$ satisfy $x \geq m$. Then $M \cup \{x\} \in Z$. So $x \in M$ and then $m \geq x$, that is, $m = x$. Therefore, m is maximal in X.
Theorem. Zorn’s Lemma. Let X be a nonempty ordered set so that every chain in X has an upper bound. Then X has a maximal element.

Proof. Let Z be the set of all chains in X, ordered by inclusion. If $C \in Z$, then every subset of C is in Z, too. Moreover, the union of every chain in Z is again an element of Z. Hence Z has a maximal element M with respect to inclusion. This set M has an upper bound m in X, and $M \cup \{m\}$ is a chain in X, that is, $M \cup \{m\} \in Z$. But M is maximal in Z, so $m \in M$. Now let $x \in X$ satisfy $x \geq m$. Then $M \cup \{x\} \in Z$. So $x \in M$ and then $m \geq x$, that is, $m = x$. Therefore, m is maximal in X. ■
Theorem.

Let A be an infinite set.

$\left(A \times \{0\} \right) \cup \left(A \times \{1\} \right) = A \times \{0, 1\}$ is equivalent to A.

Proof. Let F be the set of all bijective functions $f: X \times \{0, 1\} \to X$, where $X \subseteq A$. $F \neq / 0$, because it contains all the bijective functions $f: X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. F is ordered by set inclusion. Moreover for any chain $C \subseteq F$ we can form the union $u = \bigcup C$, and it will be a bijective function $u: X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for C in F. Thus the hypotheses of Zorn's Lemma are satisfied. Let $h: X \times \{0, 1\} \to X$ be a maximal element of F. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C. Let $b: C \times \{0, 1\} \to C$ be a bijective function. Then $t = h \cup b$ is a bijective function between $(X \cup C) \times \{0, 1\}$ and $X \cup C$, that is, $t \in F$, contradiction.
Theorem. Let A be an infinite set.
Theorem. Let A be an infinite set. Then
\[(A \times \{0\}) \cup (A \times \{1\})\]
Theorem. Let A be an infinite set. Then

$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$
Theorem. Let \(A \) be an infinite set. Then
\[
(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}
\]
is equivalent to \(A \).
Theorem. Let A be an infinite set. Then $(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$ is equivalent to A.

Proof.
Theorem. Let A be an infinite set. Then $(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$.
Theorem. Let A be an infinite set. Then

$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$

is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable.
Theorem. Let A be an infinite set. Then

$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$

is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion.
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$.
Theorem. Let A be an infinite set. Then
\[(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\} \text{ is equivalent to } A.\]

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$.
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise).
Theorem. Let A be an infinite set. Then
\[(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}\] is equivalent to A.

Proof. Let \(\mathcal{F} \) be the set of all bijective functions \(f : X \times \{0, 1\} \rightarrow X \), where \(X \subseteq A \). \(\mathcal{F} \neq \emptyset \), because it contains all the bijective functions \(f : X \times \{0, 1\} \rightarrow X \), where \(X \subseteq A \) is countable. \(\mathcal{F} \) is ordered by set inclusion. Moreover for any chain \(\mathcal{C} \subseteq \mathcal{F} \) we can form the union \(u := \bigcup \mathcal{C} \), and it will be a bijective function \(u : X_u \times \{0, 1\} \rightarrow X_u \) for some subset \(X_u \subseteq A \) (good exercise). Now \(u \) is an upper bound for \(\mathcal{C} \) in \(\mathcal{F} \).
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for \mathcal{C} in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.
Theorem. Let \(A \) be an infinite set. Then
\[
(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}
\]
is equivalent to \(A \).

Proof. Let \(\mathcal{F} \) be the set of all bijective functions
\[f : X \times \{0, 1\} \to X, \text{ where } X \subseteq A. \] \(\mathcal{F} \neq \emptyset, \) because it contains all the bijective functions \(f : X \times \{0, 1\} \to X, \text{ where } X \subseteq A \) is countable. \(\mathcal{F} \) is ordered by set inclusion. Moreover for any chain \(\mathcal{C} \subseteq \mathcal{F} \) we can form the union \(u := \bigcup \mathcal{C} \), and it will be a bijective function \(u : X_u \times \{0, 1\} \to X_u \) for some subset \(X_u \subseteq A \) (good exercise). Now \(u \) is an upper bound for \(\mathcal{C} \) in \(\mathcal{F} \). Thus the hypotheses of Zorn’s Lemma are satisfied.
Let \(h : X \times \{0, 1\} \to X \) be a maximal element of \(\mathcal{F} \).
Theorem. Let A be an infinite set. Then
\[(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}\] is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \rightarrow X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \rightarrow X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \rightarrow X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for \mathcal{C} in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.

Let $h : X \times \{0, 1\} \rightarrow X$ be a maximal element of \mathcal{F}. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C.
Theorem. Let A be an infinite set. Then
\[(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\} \text{ is equivalent to } A.\]

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for \mathcal{C} in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.

Let $h : X \times \{0, 1\} \to X$ be a maximal element of \mathcal{F}. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C. Let $b : C \times \{0, 1\} \to C$ be a bijective function.
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $C \subseteq \mathcal{F}$ we can form the union $u := \bigcup C$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for C in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.

Let $h : X \times \{0, 1\} \to X$ be a maximal element of \mathcal{F}. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C.

Let $b : C \times \{0, 1\} \to C$ be a bijective function. Then $t : h \cup b$ is a bijective function between $(X \cup C) \times \{0, 1\}$ and $X \cup C$.
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $C \subseteq \mathcal{F}$ we can form the union $u := \bigcup C$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for C in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.

Let $h : X \times \{0, 1\} \to X$ be a maximal element of \mathcal{F}. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C. Let $b : C \times \{0, 1\} \to C$ be a bijective function. Then $t : h \cup b$ is a bijective function between $(X \cup C) \times \{0, 1\}$ and $X \cup C$, that is, $t \in \mathcal{F}$.
Theorem. Let A be an infinite set. Then
$$(A \times \{0\}) \cup (A \times \{1\}) = A \times \{0, 1\}$$ is equivalent to A.

Proof. Let \mathcal{F} be the set of all bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$. $\mathcal{F} \neq \emptyset$, because it contains all the bijective functions $f : X \times \{0, 1\} \to X$, where $X \subseteq A$ is countable. \mathcal{F} is ordered by set inclusion. Moreover for any chain $\mathcal{C} \subseteq \mathcal{F}$ we can form the union $u := \bigcup \mathcal{C}$, and it will be a bijective function $u : X_u \times \{0, 1\} \to X_u$ for some subset $X_u \subseteq A$ (good exercise). Now u is an upper bound for \mathcal{C} in \mathcal{F}. Thus the hypotheses of Zorn’s Lemma are satisfied.

Let $h : X \times \{0, 1\} \to X$ be a maximal element of \mathcal{F}. Suppose for a contradiction that $A \setminus X$ contains a countably infinite set C. Let $b : C \times \{0, 1\} \to C$ be a bijective function. Then $t : h \cup b$ is a bijective function between $(X \cup C) \times \{0, 1\}$ and $X \cup C$, that is, $t \in \mathcal{F}$, contradiction.
Proof (cont.).
Proof (cont.). Therefore $A \setminus X$ cannot be infinite.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C. Then $C \setminus R$ is still countably infinite.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C. Then $C \setminus R$ is still countably infinite. Let $p : h^{-1}[C] \to C \setminus R$ be a bijective function.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C. Then $C \setminus R$ is still countably infinite. Let $p : h^{-1}[C] \rightarrow C \setminus R$ be a bijective function and let $q : (A \setminus X) \times \{0, 1\} \rightarrow A \setminus X \cup R$ be a bijective function.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C. Then $C \setminus R$ is still countably infinite. Let $p : h^{-1}[C] \to C \setminus R$ be a bijective function and let $q : (A \setminus X) \times \{0, 1\} \to A \setminus X \cup R$ be a bijective function. Then $t := \left(h \setminus h|_{h^{-1}[C]}\right) \cup p \cup q$ is the desired bijective function with domain $A \times \{0, 1\}$ and range A.
Proof (cont.). Therefore $A \setminus X$ cannot be infinite. If $A \setminus X = \emptyset$, then the function h is the desired bijection between $A \times \{0, 1\}$ and A. Finally consider the case that $A \setminus X \neq \emptyset$. By the above, $A \setminus X$ is finite. Let $C \subseteq X$ be a countably infinite subset of X. Let $R \subseteq C$ be an $|A \setminus X|$-element subset of C. Then $C \setminus R$ is still countably infinite. Let $p : h^{-1}[C] \rightarrow C \setminus R$ be a bijective function and let $q : (A \setminus X) \times \{0, 1\} \rightarrow A \setminus X \cup R$ be a bijective function. Then $t := h \setminus h|_{h^{-1}[C]} \cup p \cup q$ is the desired bijective function with domain $A \times \{0, 1\}$ and range A. \hfill \blacksquare
Definition.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a well-order (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \mathbb{N} is well-ordered.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \mathbb{N} is well-ordered.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \mathbb{N} is well-ordered.

Theorem.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \mathbb{N} is well-ordered.

Theorem. Well-ordering Theorem.
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \mathbb{N} is well-ordered.

Theorem. **Well-ordering Theorem.** *Every set can be well-ordered.*
Definition. Let S be a set and let $\leq \subseteq S \times S$ be an order relation. Then \leq is called a **well-order** (relation) iff it is a total order and every nonempty subset of S has a smallest element with respect to \leq.

Example. \(\mathbb{N} \) is well-ordered.

Theorem. **Well-ordering Theorem.** Every set can be well-ordered. That is, for every set S, there is a well-order relation $\leq \subseteq S \times S$.
Proof.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubset \leq_2$ iff $D_1 \subseteq D_2$.

Bernd Schröder, Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \mid_{D_1 \times D_1} = \leq_1$.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \subseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 |_{D_1 \times D_1} = \leq_1$. Then \subseteq is an order relation on X.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \mid_{D_1 \times D_1} = \leq_1$. Then \sqsubseteq is an order relation on X (good exercise).
Proof. Let X be the set of all well-order relations $\leq \subset D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subset D_1 \times D_1$ and $\leq_2 \subset D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \upharpoonright D_1 \times D_1 = \leq_1$. Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

Bernd Schröder, Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \upharpoonright D_1 \times D_1 = \leq_1$. Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.
\leq is an order relation:
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \mid_{D_1 \times D_1} = \leq_1$.

Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

\leq is an order relation: Reflexivity is trivial.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \mid_{D_1 \times D_1} = \leq_1$.

Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

\leq is an order relation: Reflexivity is trivial. Let D be the domain of the relation \leq.
Proof. Let \(X \) be the set of all well-order relations \(\leq \subseteq D \times D \), where \(D \) is a subset of \(S \). Then \(X \neq \emptyset \). For any two well-order relations \(\leq_1 \subseteq D_1 \times D_1 \) and \(\leq_2 \subseteq D_2 \times D_2 \) in \(X \) define \(\leq_1 \subseteq \leq_2 \) iff \(D_1 \subseteq D_2 \), every \(d_2 \in D_2 \setminus D_1 \) is a strict \(\leq_2 \)-upper bound of \(D_1 \), and \(\leq_2 \mid_{D_1 \times D_1} = \leq_1 \). Then \(\subseteq \) is an order relation on \(X \) (good exercise). Let \(\mathcal{C} \subseteq X \) be a chain and let \(\leq := \bigcup \mathcal{C} \).

\(\leq \) is an order relation: Reflexivity is trivial. Let \(D \) be the domain of the relation \(\leq \). For antisymmetry, let \(x, y \in D \) be so that \(x \leq y \) and \(y \leq x \).
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \mid_{D_1 \times D_1} = \leq_1$.

Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

\leq is an order relation: Reflexivity is trivial. Let D be the domain of the relation \leq. For antisymmetry, let $x, y \in D$ be so that $x \leq y$ and $y \leq x$. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $x, y \in D'$.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 |_{D_1 \times D_1} = \leq_1$.

Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

\leq is an order relation: Reflexivity is trivial. Let D be the domain of the relation \leq. For antisymmetry, let $x, y \in D$ be so that $x \leq y$ and $y \leq x$. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $x, y \in D'$. Hence $x \leq' y$ and $y \leq' x$, which implies $x = y$.
Proof. Let X be the set of all well-order relations $\leq \subseteq D \times D$, where D is a subset of S. Then $X \neq \emptyset$. For any two well-order relations $\leq_1 \subseteq D_1 \times D_1$ and $\leq_2 \subseteq D_2 \times D_2$ in X define $\leq_1 \sqsubseteq \leq_2$ iff $D_1 \subseteq D_2$, every $d_2 \in D_2 \setminus D_1$ is a strict \leq_2-upper bound of D_1, and $\leq_2 \upharpoonright D_1 \times D_1 = \leq_1$.

Then \sqsubseteq is an order relation on X (good exercise). Let $\mathcal{C} \subseteq X$ be a chain and let $\leq := \bigcup \mathcal{C}$.

\leq is an order relation: Reflexivity is trivial. Let D be the domain of the relation \leq. For antisymmetry, let $x, y \in D$ be so that $x \leq y$ and $y \leq x$. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $x, y \in D'$. Hence $x \leq' y$ and $y \leq' x$, which implies $x = y$. Transitivity is proved similarly.
Proof (cont.).

Now let $\leq' \in C$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$.

Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in C$ with domain D'' so that $\leq' \sqsubseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$.

Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup C$, $\leq|_{D' \times D'} = \leq'$.

This does not establish that \leq is an upper bound of C, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D.

Then there is a $\leq' \in C$ with domain D' so that $A \cap D' \neq \emptyset$.

Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a.

Because $\leq|_{D' \times D'} = \leq'$, a is the \leq-smallest element of $A \cap D'$.

Because all elements of $D \setminus D'$ are \leq-strict upper bounds of D', a is the \leq-smallest element of A.

Therefore (simple exercise, maybe too simple) \leq is a well-order. Hence it is a \sqsubseteq-upper bound of C.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Choice Functions
Zorn’s Lemma
Well-Ordering Theorem

Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'.
Proof (cont.). Now let \(\leq' \in \mathcal{C} \) and let \(D' \) be the domain of \(\leq' \). Clearly, \(D' \subseteq D \).
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \sqsubseteq \leq''$ and $d \in D'' \setminus D'$.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$.
Proof (cont.). Now let $\leq' \in C$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in C$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq |_{D' \times D'} = \leq'$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \sqsubseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}, \leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.
Proof (cont.). Now let $\leq' \in \mathbb{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathbb{C}$ with domain D'' so that $\leq' \sqsubseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathbb{C}$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathbb{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $A \cap D' \neq \emptyset$.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $A \cap D' \neq \emptyset$. Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \sqsubseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq|_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $A \cap D' \neq \emptyset$. Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a. Because $\leq|_{D' \times D'} = \leq'$, a is the \leq-smallest element of $A \cap D'$.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $A \cap D' \neq \emptyset$. Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a. Because $\leq |_{D' \times D'} = \leq'$, a is the \leq-smallest element of $A \cap D'$. Because all elements of $D \setminus D'$ are \leq-strict upper bounds of D', a is the \leq-smallest element of A.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof (cont.). Now let $\leq' \in C$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in C$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup C$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of C, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in C$ with domain D' so that $A \cap D' \neq \emptyset$. Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a. Because $\leq |_{D' \times D'} = \leq'$, a is the \leq-smallest element of $A \cap D'$. Because all elements of $D \setminus D'$ are \leq-strict upper bounds of D', a is the \leq-smallest element of A. Therefore (simple exercise, maybe too simple) \leq is a well-order.
Proof (cont.). Now let $\leq' \in \mathcal{C}$ and let D' be the domain of \leq'. Clearly, $D' \subseteq D$. Let $d \in D \setminus D'$ and let $d' \in D'$. There is a $\leq'' \in \mathcal{C}$ with domain D'' so that $\leq' \subseteq \leq''$ and $d \in D'' \setminus D'$. But then $d \geq'' d'$, which means $d > d'$. Hence d is a strict \leq-upper bound of D'. Finally, because $\leq = \bigcup \mathcal{C}$, $\leq |_{D' \times D'} = \leq'$. This does not establish that \leq is an upper bound of \mathcal{C}, because we still do not know if $\leq \in X$.

For $\leq \in X$, let $A \subseteq D$ be a nonempty subset of D. Then there is a $\leq' \in \mathcal{C}$ with domain D' so that $A \cap D' \neq \emptyset$. Because \leq' is a well-order, $A \cap D'$ has a \leq'-smallest element a. Because $\leq |_{D' \times D'} = \leq'$, a is the \leq-smallest element of $A \cap D'$. Because all elements of $D \setminus D'$ are \leq-strict upper bounds of D', a is the \leq-smallest element of A. Therefore (simple exercise, maybe too simple) \leq is a well-order. Hence it is a \subseteq-upper bound of \mathcal{C}.
Proof (concl.).
Proof (concl.). By Zorn’s Lemma, X has a \subseteq-maximal element \leq.
Proof (concl.). By Zorn’s Lemma, X has a \sqsubseteq-maximal element \leq. Then \leq is a well-order with domain D.

\[\text{Proof (concl.). By Zorn’s Lemma, } X \text{ has a } \sqsubseteq-\text{maximal element } \leq. \text{ Then } \leq \text{ is a well-order with domain } D. \]
Proof (concl.). By Zorn’s Lemma, X has a \sqsubseteq-maximal element \leq. Then \leq is a well-order with domain D. Suppose for a contradiction that $D \neq S$ and let $s \in D \setminus S$.
Proof (concl.). By Zorn’s Lemma, X has a \sqsubseteq-maximal element \leq. Then \leq is a well-order with domain D. Suppose for a contradiction that $D \neq S$ and let $s \in D \setminus S$. Define \leq' to be an order relation on $D \cup \{s\}$ so that $\leq' |_{D \times D} = \leq$ and so that s is a strict \leq'-upper bound of D. Then $\leq' \in X$ is a strict \sqsubseteq-upper bound of \leq, contradicting the maximality of \leq. Hence \leq must be a well-order for S.
Proof (concl.). By Zorn’s Lemma, X has a \sqsubseteq-maximal element \leq. Then \leq is a well-order with domain D. Suppose for a contradiction that $D \neq S$ and let $s \in D \setminus S$. Define \leq' to be an order relation on $D \cup \{s\}$ so that $\leq'|_{D \times D} = \leq$ and so that s is a strict \leq'-upper bound of D. Then $\leq' \in X$ is a strict \sqsubseteq-upper bound of \leq, contradicting the maximality of \leq.
Proof (concl.). By Zorn’s Lemma, X has a \sqsubseteq-maximal element \leq. Then \leq is a well-order with domain D. Suppose for a contradiction that $D \neq S$ and let $s \in D \setminus S$. Define \leq' to be an order relation on $D \cup \{s\}$ so that $\leq' |_{D \times D} = \leq$ and so that s is a strict \leq'-upper bound of D. Then $\leq' \in X$ is a strict \sqsubseteq-upper bound of \leq, contradicting the maximality of \leq. Hence \leq must be a well-order for S.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Axiom of Choice
Proof (concl.). By Zorn’s Lemma, \(X \) has a \(\sqsubseteq \)-maximal element \(\leq \). Then \(\leq \) is a well-order with domain \(D \). Suppose for a contradiction that \(D \neq S \) and let \(s \in D \setminus S \). Define \(\leq' \) to be an order relation on \(D \cup \{s\} \) so that \(\leq' \mid_{D \times D} = \leq \) and so that \(s \) is a strict \(\leq' \)-upper bound of \(D \). Then \(\leq' \in X \) is a strict \(\sqsubseteq \)-upper bound of \(\leq \), contradicting the maximality of \(\leq \). Hence \(\leq \) must be a well-order for \(S \).