These notes correspond to Section 8.6 in the text.

Differentiation and Integration of Power Series

We have previously learned how to compute power series representations of certain functions, by relating them to geometric series. We can obtain power series representation for a wider variety of functions by exploiting the fact that a convergent power series can be differentiated, or integrated, term-by-term to obtain a new power series that has the same radius of convergence as the original power series. The new power series is a representation of the derivative, or antiderivative, of the function that is represented by the original power series.

This is particularly useful when we have a function \(f(x) \) for which we do not know how to obtain a power series representation directly. If its derivative \(f'(x) \), or its antiderivative \(\int f(x) \, dx \), is a function for which a power series representation can easily be computed, such as the examples from the previous lecture, then we can integrate, or differentiate, this power series term-by-term to obtain a power series for \(f(x) \).

Example The function

\[
 f(x) = \frac{4}{(2 - x)^2}
\]

is the derivative of the function

\[
 g(x) = \frac{2x}{2 - x},
\]

which, from the previous lecture, has the power series representation

\[
 \frac{2x}{2 - x} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} x^n.
\]

This series converges when \(-2 < x < 2\). To obtain a power series representation of \(f(x) \), we differentiate this series term-by-term to obtain

\[
 \frac{4}{(2 - x)^2} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} n x^{n-1} = \sum_{n=0}^{\infty} \frac{(n + 1)}{2^n} x^n,
\]

which also converges when \(-2 < x < 2\). \(\Box\)
Example The function

\[f(x) = \frac{1}{2} \tan^{-1} \frac{x - 2}{2} \]

has the derivative

\[f'(x) = \frac{1}{(x - 2)^2 + 4}. \]

From the previous lecture, this function has the power series

\[\frac{1}{(x - 2)^2 + 4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x - 2)^{2n}, \]

whose interval of convergence is \(0 < x < 4\). Integrating this series term-by-term yields

\[\frac{1}{2} \tan^{-1} \frac{x - 2}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} \int (x - 2)^{2n} \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} \frac{(x - 2)^{2n+1}}{2n+1} + C. \]

To determine the value of \(C\), we substitute \(x = 2\) into the above equation. This causes all terms in the series to vanish. We also have \(f(2) = 0\), which yields \(C = 0\). □

Example Consider the definite integral

\[\int_{0}^{1} \frac{1}{1 + x^4} \, dx. \]

Attempting to evaluate this integral using partial fraction decomposition is not possible without introducing complex numbers. Instead, we express the integrand as a (geometric) power series:

\[\frac{1}{1 + x^4} = \frac{1}{1 - (-x^4)} = \sum_{n=0}^{\infty} (-x^4)^n = \sum_{n=0}^{\infty} (-1)^n x^{4n}. \]

This power series has an interval of convergence of \(-1 < x < 1\), which contains the interval of integration \((0, 1)\). Integrating the power series term-by-term from 0 to 1 yields

\[\int_{0}^{1} \frac{1}{1 + x^4} \, dx = \int_{0}^{1} \sum_{n=0}^{\infty} (-1)^n x^{4n} \, dx = \sum_{n=0}^{\infty} (-1)^n \int_{0}^{1} x^{4n} \, dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{4n+1} \bigg|_{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+1}. \]

This is an alternating series, which, by the Alternating Series Test, converges since, for all \(n \geq 0\),

\[\frac{1}{4n + 1} \geq 0, \quad \lim_{n \to \infty} \frac{1}{4n + 1} = 0, \quad \text{and} \quad \frac{1}{4(n + 1) + 1} < \frac{1}{4n + 1}. \]

Using the Alternating Series Estimation Theorem, we can evaluate this integral numerically, to any degree of accuracy we wish, by choosing \(n\) large enough so that \(1/(4n + 1)\) is sufficiently small. □
Summary

- A power series representation of a function $f(x)$ can be differentiated term-by-term to obtain a power series representation of its derivative $f'(x)$. The interval of convergence of the differentiated series is the same as that of the original series.

- A power series representation of a function $f(x)$ can be anti-differentiated term-by-term to obtain a power series representation of its anti-derivative $\int f(x) \, dx$. The value of the constant of integration, C, can be determined by substituting the center of the power series for x. The interval of convergence of the anti-differentiated series is the same as that of the original series.

- A power series representation of a function $f(x)$ can be integrated term-by-term from a to b to obtain a series representation of the definite integral $\int_a^b f(x) \, dx$, provided that the interval (a, b) lies within the interval of convergence of the power series that represents $f(x)$.