1. Use Lagrange multipliers to find the point on the circle \(x^2 + y^2 = 4 \) closest to the point \((1, 5)\).

Solution We have \(f(x, y) = (x - 1)^2 + (y - 5)^2 \), the square of the distance from \((x, y)\) to \((1, 5)\), as the objective function that is to be minimized. The constraints are given by
\[g(x, y) = x^2 + y^2 - 4 = 0. \]
We then have
\[f_x = \lambda g_x, \quad f_y = \lambda g_y, \]
where \(\lambda \) is the Lagrange multiplier. This gives
\[2(x - 1) = \lambda 2x, \quad 2(y - 5) = \lambda 2y, \quad x^2 + y^2 = 4. \]
From the first two equations, we obtain two distinct expressions for \(\lambda \). Equating them yields
\[\frac{x - 1}{x} = \frac{y - 5}{y} \]
which simplifies to \(y = 5x \). Substituting this into the constraint yields \(26x^2 = 4 \), or \(x = \pm 0.39223 \). We then have the points \((x, y) = \pm (0.39223, 1.96116)\). Substituting these into \(f(x, y) \) gives the minimizer \((0.39223, 1.96116)\).

2. Evaluate the iterated integral
\[\int_0^\pi \int_0^1 \int_0^{\sqrt{1-y^2}} y \sin x \, dz \, dy \, dx. \]

Solution We have
\[\int_0^\pi \int_0^1 \int_0^{\sqrt{1-y^2}} y \sin x \, dz \, dy \, dx = \int_0^\pi \sin x \, dx \int_0^1 y \int_0^{\sqrt{1-y^2}} \, dz \, dy \]
\[= -\cos x \bigg|_0^\pi \int_0^1 y \sqrt{1-y^2} \, dy \]
\[= (0-(-1)) \int_0^1 y \sqrt{1-y^2} \, dy \]
\[= \frac{2}{3} \int_0^1 u^{1/2} \, du, \quad u = 1 - y^2, \quad du = -2y \, dy \]
\[= \frac{2}{3} \left[\frac{1}{3} u^{3/2} \right]_0^1 \]
\[= \frac{2}{3}. \]

3. Evaluate
\[\int \int_D \frac{y}{1+x^2} \, dA, \]
where \(D \) is the region bounded by \(y = \sqrt{x}, \ y = 0 \) and \(x = 1 \).
Solution We have

\[
\int \int_D \frac{y}{1 + x^2} \, dA = \int_0^1 \int_0^{\sqrt{x}} \frac{y}{1 + x^2} \, dy \, dx
\]

\[
= \int_0^1 \frac{1}{1 + x^2} \int_0^{\sqrt{x}} y \, dy \, dx
\]

\[
= \int_0^1 \frac{1}{1 + x^2} \frac{y^2}{2} \bigg|_0^{\sqrt{x}} \, dx
\]

\[
= \frac{1}{2} \int_0^1 \frac{x}{1 + x^2} \, dx
\]

\[
= \frac{1}{4} \int_1^2 \frac{1}{u} \, du, \quad u = 1 + x^2, \quad du = 2x \, dx
\]

\[
= \frac{1}{4} \ln |u|^2_1
\]

\[
= \frac{1}{4} \ln 2.
\]

4. Evaluate

\[
\int \int_D (x^2 + y^2)^{3/2} \, dA,
\]

where \(D \) is the region in the first quadrant bounded by the lines \(y = 0 \) and \(y = \sqrt{3}x \), and the circle \(x^2 + y^2 = 9 \).

Solution Let \(f(x, y) = (x^2 + y^2)^{3/2} \). Converting to polar coordinates, we obtain

\[
\int \int_D (x^2 + y^2)^{3/2} \, dA = \int_0^{\pi/3} \int_0^3 f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
\]

\[
= \int_0^{\pi/3} \int_0^3 (r^2)^{3/2} \, r \, dr \, d\theta
\]

\[
= \int_0^{\pi/3} \int_0^3 r^4 \, dr \, d\theta
\]

\[
= \int_0^{\pi/3} d\theta \int_0^3 r^4 \, dr
\]

\[
= \frac{\pi}{3} \left[\frac{r^5}{5} \right]_0^3
\]

\[
= \frac{81\pi}{5}.
\]

The upper limit of \(\theta, \pi/3 \), is obtained using the fact that the slope of the line \(y = \sqrt{3}x, \sqrt{3} \), is equal to \(\tan \frac{\pi}{3} \).

5. Evaluate

\[
\int \int \int_H z^2 \sqrt{x^2 + y^2 + z^2} \, dV,
\]

where \(H \) is the solid hemisphere that lies above the \(xy \)-plane and has center at the origin with radius 1.
\textbf{Solution} Using spherical coordinates, we obtain

\[
\int \int \int_H z^2 \sqrt{x^2 + y^2 + z^2} \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^1 (\rho \cos \phi)^2 \rho (\rho^2 \sin \phi) \, d\rho \, d\phi \, d\theta
\]

\[
= \int_0^{2\pi} d\theta \int_0^{\pi/2} \cos^2 \phi \sin \phi \, d\phi \int_0^1 \rho^5 \, d\rho
\]

\[
= 2\pi \int_0^1 u^2 \, du \left(\frac{\rho^6}{6}\right)^1_0, \quad u = \cos \phi, \quad du = -\sin \phi \, d\phi
\]

\[
= 2\pi \left(\frac{u^3}{3}\right)^1_0 \frac{1}{6}
\]

\[
= \frac{\pi}{9}.
\]

6. Find the volume of the solid bounded by the cylinder \(x^2 + y^2 = 4\) and the planes \(z = 0\) and \(y + z = 3\).

\textbf{Solution} Using cylindrical coordinates, we obtain

\[
V = \int_0^{2\pi} \int_0^2 \int_0^{3-r \sin \theta} r \, dz \, dr \, d\theta
\]

\[
= \int_0^{2\pi} \int_0^2 (r(3 - r \sin \theta)) \, dr \, d\theta
\]

\[
= \int_0^{2\pi} \left(3r^2 - \frac{r^3 \sin \theta}{3}\right)^2 \, d\theta
\]

\[
= \int_0^{2\pi} \left(6r^2 - \frac{8}{3} \sin \theta \right) \, d\theta
\]

\[
= \left(6r^2 + \frac{8}{3} \cos \theta \right)^{2\pi}_0
\]

\[
= 12\pi.
\]

7. Use the transformation \(u = x - y, \quad v = x + y\) to evaluate

\[
\int \int_R \frac{x - y}{x + y} \, dA,
\]

where \(R\) is the square with vertices (0, 2), (1, 1), (2, 2), and (1, 3).

\textbf{Solution} Solving the above equations \(x\) and \(y\), we obtain

\[
x = \frac{1}{2}(u + v), \quad y = \frac{1}{2}(v - u).
\]

This yields

\[
\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| x_u y_v - y_u x_v \right| = \left| \frac{1}{2} \frac{1}{2} - \left(\frac{-1}{2}\right) \frac{1}{2} \right| = \frac{1}{2}.
\]
Substituting the vertices of the square into the change of variable yields the transformed vertices in uv-space: $(-2, 2), (0, 2), (0, 4), \text{and} (-2, 4)$. This yields the integral

$$\int \int_R \frac{x - y}{x + y} \, dA = \int_2^4 \int_{-2}^0 \frac{u}{v} \frac{\partial(x, y)}{\partial(u, v)} \, du \, dv$$

$$= \frac{1}{2} \int_2^4 \frac{1}{v} \, dv \int_{-2}^0 \frac{u}{2} \, du$$

$$= \frac{1}{2} \ln |v|^2 \bigg|_2^0$$

$$= \frac{1}{2} (\ln 4 - \ln 2) (-2)$$

$$= -\ln 2.$$

8. Evaluate the line integral

$$\int_C \sqrt{xy} \, dx + e^y \, dy + xz \, dz,$$

where C is given by $r(t) = (t^4, t^2, t^3)$, $0 \leq t \leq 1$.

Solution From $r'(t) = (4t^3, 2t, 3t^2)$, we obtain

$$\int_C \sqrt{xy} \, dx + e^y \, dy + xz \, dz = \int_0^1 \sqrt{x(t)y(t)} \frac{dx}{dt} + e^{y(t)} \frac{dy}{dt} + x(t)z(t) \frac{dz}{dt} \, dt$$

$$= \int_0^1 t^3 (4t^3) + e^{t^2} (2t) + t^7 (3t^2) \, dt$$

$$= \int_0^1 4t^6 + 2te^{t^2} + 3t^9 \, dt$$

$$= \left(\frac{4t^7}{7} + e^{t^2} + \frac{3t^{10}}{10} \right) \bigg|_0^1$$

$$= \left(\frac{4}{7} + e + \frac{3}{10} \right) - 1.$$

9. Show that the vector field

$$\mathbf{F}(x, y, z) = (e^y, xe^y + e^z, ye^z)$$

is conservative, and use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the line segment from $(0, 2, 0)$ to $(4, 0, 3)$.

Solution A vector field $\mathbf{F} = (P, Q, R)$ is conservative if

$$R_y = Q_z, \quad P_z = R_x, \quad Q_x = P_y.$$

From

$$R_y = e^z = Q_z, \quad P_z = 0 = R_x, \quad Q_x = e^y = P_y,$$

we find that \mathbf{F} is in fact conservative. To evaluate the line integral efficiently, we need to find a function f such that $\nabla f = \mathbf{F}$. To that end, we obtain

$$f(x, y, z) = \int P \, dx = xe^y + g(y, z).$$
The requirement that \(f_y = Q \) yields the equation
\[
g_y(y, z) = Q(x, y, z) - (x e^y) y = e^z.
\]
Solving the equation for \(g_y \) yields
\[
g(y, z) = ye^z + h(z).
\]
The requirement that \(f_z = R \) yields the equation
\[
h'(z) = R(x, y, z) - (x e^y + ye^z) z = 0.
\]
It follows that \(h(z) = K \) where \(K \) is an arbitrary constant, and therefore
\[
f(x, y, z) = xe^y + ye^z + K.
\]
From the Fundamental Theorem of Line Integrals, we obtain
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r}
\]
\[
= f(4, 0, 3) - f(0, 2, 0)
\]
\[
= (4e^0 + 0e^3) - (0e^2 + 2e^0)
\]
\[
= 2.
\]

10. Use Green’s Theorem to evaluate
\[
\int_C x^2 y\,dx - y^2\,dy,
\]
where \(C \) is the circle \(x^2 + y^2 = 4 \) with counterclockwise orientation.

Solution Let \(D = \{ (x, y) \mid x^2 + y^2 \leq 4 \} \) be the interior of \(C \). Then, by Green’s Theorem,
\[
\int_C x^2 y\,dx - y^2\,dy = \int \int_D (-xy^2)\,x - (x^2 y)\,y\,dA = \int \int_D -y^2 - x^2\,dA.
\]
Converting to polar coordinates, we obtain
\[
\int_C x^2 y\,dx - y^2\,dy = \int_0^{2\pi} \int_0^2 (-r^3) r\,dr\,d\theta
\]
\[
\quad = \int_0^{2\pi} d\theta \int_0^2 -r^4\,dr
\]
\[
\quad = 2\pi \left(-\frac{r^4}{4} \right) \bigg|_0^2
\]
\[
\quad = -8\pi.
\]

11. If \(f(x, y, z) \) and \(g(x, y, z) \) are twice differentiable functions, show that
\[
\nabla^2 (fg) = f\nabla^2 g + g\nabla^2 f + 2\nabla f \cdot \nabla g,
\]
where \(\nabla^2 f = \nabla \cdot (\nabla f) \).
Solution We have
\[
\nabla^2 (fg) = \nabla \cdot (\nabla (fg))
= \nabla \cdot \langle (fg)_x, (fg)_y, (fg)_z \rangle
= \nabla \cdot \langle f_xg + fg_x + f_yg + fg_y, f_zg + fg_z \rangle
= (f_xg + fg_x)_x + (f_yg + fg_y)_y + (f_zg + fg_z)_z
= f_{xx}g + 2f_xg_x + f_{yy}g + 2f_yg_y + f_{yy}g_{zz} + f_{zz}g + f_{gg}z
= f\nabla \cdot (\nabla g) + g\nabla \cdot (\nabla f) + 2\nabla f \cdot \nabla g.
\]

In the last steps, we have used the fact that \(\nabla \cdot (\nabla f) = f_{xx} + f_{xy} + f_{yy}.\)

12. Evaluate the surface integral
\[
\int \int_S (x^2z + y^2z) \, dS,
\]
where \(S\) is the part of the plane \(z = 4 + x + y\) that lies inside the cylinder \(x^2 + y^2 = 4.\)

Solution We use the parametric equations
\[
x = u \cos v, \quad y = u \sin v, \quad z = 4 + u \cos v + u \sin v, \quad 0 \leq u \leq 2, \quad 0 \leq v \leq 2\pi,
\]
for which
\[
\mathbf{r}_u = \langle \cos v, \sin v, \cos v + \sin v \rangle, \quad \mathbf{r}_v = \langle -u \sin v, u \cos v, -u \sin v + u \cos v \rangle,
\]
\[
\mathbf{r}_u \times \mathbf{r}_v = \langle -u, -u, u \rangle, \quad ||\mathbf{r}_u \times \mathbf{r}_v|| = \sqrt{3}|u|.
\]
This yields
\[
\int \int_S (x^2z + y^2z) \, dS = \int_0^{2\pi} \int_0^2 [(u \cos v)^2 + (u \sin v)^2](4 + u \cos v + u \sin v)\sqrt{3}u \, du \, dv
= \sqrt{3} \int_0^{2\pi} \int_0^2 4u^3 + u^4 \cos v + u^4 \sin v \, du \, dv
= \sqrt{3} \int_0^{2\pi} \left[u^4 + \frac{u^5}{5} \cos v \right]^2 \, dv
= \sqrt{3} \int_0^{2\pi} \left[16 + \frac{32}{5} (\cos v + \sin v) \right] \, dv
= 16\sqrt{3}(2\pi) + \frac{32}{5} (\sin v - \cos v)^2 \biggr|_0^{2\pi}
= 32\sqrt{3}\pi.
\]

13. Evaluate the surface integral
\[
\int \int_S \mathbf{F} \cdot d\mathbf{S},\]
where
\[
\mathbf{F}(x, y, z) = \langle xz, -2y, 3x \rangle
\]
and S is the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation.

Solution We use spherical coordinates

$$
x = 2 \sin \phi \cos \theta, \quad y = 2 \sin \phi \sin \theta, \quad z = 2 \cos \phi, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi,
$$

which yields

$$
r_\phi = (2 \cos \phi \cos \theta, 2 \cos \phi \sin \theta, -2 \sin \phi), \quad r_\theta = (-2 \sin \phi \sin \theta, 2 \sin \phi \cos \theta, 0),
$$

$$
r_\phi \times r_\theta = 4 \sin \phi \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle,
$$

which has outward orientation since $4 \sin \phi \geq 0$ for $0 \leq \phi \leq \pi$. We then have

$$
\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^\pi \frac{2 \sin \phi (2 \cos \theta \cos \phi, -2 \sin \theta, 3 \cos \theta) \cdot 4 \sin \phi (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)}{d\phi} d\theta
$$

$$
= 8 \int_0^{2\pi} \int_0^\pi \sin^2 \phi (2 \cos^2 \theta \sin \phi \cos \phi - 2 \sin^2 \theta \sin \phi + 3 \cos \theta \cos \phi) d\phi d\theta
$$

$$
= 16 \int_0^{2\pi} \cos^2 \theta d\theta \int_0^\pi \sin^3 \phi \cos \phi d\phi - 16 \int_0^{2\pi} \sin^2 \theta d\theta \int_0^\pi \sin^3 \phi d\phi +
$$

$$
24 \int_0^{2\pi} \cos \theta d\theta \int_0^\pi \sin^2 \phi \cos \phi d\phi
$$

$$
= 8 \int_0^{2\pi} 1 + \cos 2\theta d\theta \int_0^\pi u^3 du - \int \int \mathbf{F} \cdot d\mathbf{S} = 8 \int_0^{2\pi} \sin \phi \cos \phi d\phi
$$

$$
= 8 \int_0^{2\pi} \sin \phi \cos \phi d\phi = 8 \int_0^{2\pi} \sin \phi \cos \phi d\phi
$$

$$
= 16 \pi \left[\frac{\sin^4 \phi}{4} \right]_0^\pi + 16 \pi \int_0^1 (1 - v^2) dv \quad (v = \cos \phi, dv = -\sin \phi d\phi)
$$

$$
= 16 \pi \left(\cos \phi - \frac{\cos^3 \phi}{3} \right)_0^\pi
$$

$$
= 16 \pi \left(-2 + \frac{2}{3} \right)
$$

$$
= \frac{64 \pi}{3}.
$$

Here, we have used the trigonometric identities

$$
\cos^2 \theta = \frac{1 + \cos 2\theta}{2}, \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}.
$$

14. Use Stokes’ Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \langle xy, yz, xz \rangle$ and C is the triangle with vertices $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$, oriented counterclockwise as viewed from above. **Hint:** to obtain an equation for the surface enclosed by C, compute the equation of a plane containing the vertices.

Solution Using the given vertices, it can be determined that S is contained within the plane $x + y + z = 1$. We therefore describe S using the parametric equations

$$
x = u, \quad y = v, \quad z = 1 - u - v, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 1 - u,
which yields \(\mathbf{r}_u = \langle 1, 0, -1 \rangle, \ \mathbf{r}_v = \langle 0, 1, -1 \rangle, \) and the normal vector
\[
\mathbf{r}_u \times \mathbf{r}_v = \langle 1, 1, 1 \rangle,
\]
which is consistent with the counterclockwise orientation of \(C \) (that is, when traversing \(C \) such that this normal vector, which points upward, is visible, then the region \(S \) is on the left). Applying Stokes’ Theorem yields
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \int_0^{1-u} \text{curl} \mathbf{F}(u, v) : (\mathbf{r}_u \times \mathbf{r}_v) \, dv \, du.
\]
From
\[
\text{curl} \mathbf{F} = (R_y - Q_z, P_z - R_x, Q_x - P_y)
\]
\[= ((xz)_y - (yz)_z, (xy)_z - (xz)_x, (yz)_x - (xy)_y)
\]
\[= (-y, -z, -x).
\]
We then have
\[
\text{curl} \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) = (-y, -z, -x) \cdot (1, 1, 1) = -(x + y + z),
\]
and thus
\[
\text{curl} \mathbf{F}(u, v) : (\mathbf{r}_u \times \mathbf{r}_v) = -(u + v + 1 - u - v) = -1.
\]
We conclude that
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = -\int_0^1 \int_0^{1-u} 1 \, dv \, du = -A(D),
\]
where \(D \) is the triangle \(\{ (u, v) \mid 0 \leq u \leq 1, 0 \leq v \leq 1 - u \} \). This triangle has base and height 1, which yields
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = -\frac{1}{2}.
\]
15. Use the Divergence Theorem to evaluate the surface integral \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F}(x, y, z) = (x^3, y^3, z^3) \) and \(S \) is the surface of the solid \(E \) bounded by the cylinder \(x^2 + y^2 = 1 \) and the planes \(z = 0 \) and \(z = 2 \).

Solution Using cylindrical coordinates, we obtain
\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \text{div} \mathbf{F} \, dV
\]
\[= \iiint_E [(x^3)_x + (y^3)_y + (z^3)_z] \, dV
\]
\[= \iiint_E 3(x^2 + y^2 + z^2) \, dV
\]
\[= \int_0^{2\pi} \int_0^1 \int_0^2 (r^2 + z^2) r \, dz \, dr \, d\theta
\]
\[= \int_0^{2\pi} \int_0^1 \left(r^3 z + r \frac{z^3}{3} \right)_0^2 \, dr \, d\theta
\]
\[= 3 \int_0^{2\pi} d\theta \int_0^1 2r^3 + \frac{8}{3} r \, dr \]

\[= 6\pi \left(\frac{r^4}{2} + \frac{4r^2}{3} \right) \bigg|_0^1 \]

\[= 11\pi. \]