1. Solve the equation
\[\frac{dy}{dt} + y = \frac{1}{1 + e^t}. \]

Solution This is a linear equation of the form
\[\frac{dy}{dt} + p(t)y = q(t), \]
with \(p(t) = 1 \) and \(q(t) = 1/(1 + e^t) \). Using the integrating factor
\[\mu(t) = e^{\int p(t) \, dt} = e^{\int 1 \, dt} = e^t, \]
we obtain the solution
\[
y(t) = \frac{1}{\mu(t)} \int \mu(t) q(t) \, dt = \frac{1}{e^t} \int \frac{e^t}{1 + e^t} \, dt = e^{-t} \int \frac{1}{1 + u} \, du, \quad u = e^t, \quad du = e^t \, dt = e^{-t} \left[\ln |1 + u| + C \right] = e^{-t} \left[\ln |1 + e^t| + C \right] = Ce^{-t} + e^{-t} \ln (1 + e^t),
\]
where \(C \) is an arbitrary constant.

2. Solve the equation
\[\frac{dy}{dx} = \frac{1 + \cos x}{2 - \sin y}. \]

Solution This is a separable equation, which can be rewritten in the form
\[(2 - \sin y) \, dy = (1 + \cos x) \, dx. \]

Integrating both sides yields
\[2y + \cos y = x + \sin x + C, \]
where \(C \) is an arbitrary constant.
3. Solve the equation
\[
\frac{dy}{dx} = \frac{x + y}{x - y}.
\]

Solution This is a homogeneous equation, as it can be written in the form
\[
\frac{dy}{dx} = \frac{x + y \frac{1}{x}}{x - y \frac{1}{x}} = \frac{1 + y/x}{1 - y/x}.
\]

Using the change of variable \(v = y/x \), we obtain the new equation
\[
v + x \frac{dv}{dx} = \frac{1 + v}{1 - v}.
\]

Rearranging, we obtain
\[
\frac{dv}{dx} = \frac{1 + v}{1 - v} - v = \frac{1 + v - v(1 - v)}{1 - v} = \frac{1 + v^2}{1 - v}.
\]

This equation is separable, and can be written in the form
\[
\frac{1 - v}{1 + v^2} dv = \frac{1}{x} dx.
\]

Integrating both sides yields
\[
\tan^{-1} v - \frac{1}{2} \ln(1 + v^2) = \ln |x| + C,
\]
where \(C \) is an arbitrary constant. Using the relation \(v = y/x \), we obtain
\[
\tan^{-1}(y/x) - \ln \sqrt{1 + y^2/x^2} = \ln |x| + C.
\]

Using the properties of logarithms, we have
\[
\ln \sqrt{1 + y^2/x^2} = \ln \sqrt{\frac{x^2 + y^2}{x^2}} = \ln \sqrt{x^2 + y^2} - \ln x^2 = \ln \sqrt{x^2 + y^2} - \ln |x|,
\]
which allows the equation for the solution to be simplified to
\[
\tan^{-1}(y/x) - \ln \sqrt{x^2 + y^2} = C.
\]

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt in solution. Water containing 1 lb of salt per gallon (ick!) is entering at a rate of 3 gal/min, and the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Write down a differential
equation for $Q(t)$, the amount of salt in the tank at time t where t is measured in minutes. Then solve the equation.

Solution The differential equation for $Q(t)$ has the form

$$\frac{dQ}{dt} = \text{inflow rate} - \text{outflow rate}.$$

The inflow rate is the product of the flow rate of the entering solution, 3 gal/min, and the concentration of salt in the entering solution, 1 lb/gal, which is 3 lb/min. The outflow rate is the product of the flow rate of the exiting solution, 2 gal/min, and the concentration of salt in the exiting solution, which is the ratio of the amount of salt, $Q(t)$, to the amount of water, which is $200 + t$. This is because the tank initially contains 200 gal of water, and with each minute 3 gallons flow in and 2 gallons flow out, causing a net increase of 1 gal/min.

It follows that the differential equation is

$$\frac{dQ}{dt} = 3 - \frac{2Q}{200 + t},$$

with initial condition $Q(0) = 100$, since the tank initially contains 100 lb of salt in solution. This is a linear equation of the form

$$\frac{dy}{dt} + p(t)y = q(t),$$

where $p(t) = 2/(200 + t)$ and $q(t) = 3$. The integrating factor is

$$\mu(t) = e^{\int \frac{2}{200+t} \, dt} = e^{2 \ln |200+t|} = e^{\ln(200+t)^2} = (200 + t)^2.$$

Therefore the solution is

$$Q(t) = \frac{1}{\mu(t)} \int \mu(t)q(t) \, dt$$

$$= \frac{1}{(200 + t)^2} \int 3(200 + t)^2 \, dt$$

$$= \frac{1}{(200 + t)^2} [(200 + t)^3 + C]$$

where C is an arbitrary constant. To determine the value of C, we use the initial condition $Q(0) = 100$, which yields the equation

$$100 = \frac{1}{200^2} [200^3 + C].$$

Rearranging yields

$$C = 100(200)^2 - 200^3 = 200^2(100 - 200) = -100(200)^2.$$
We conclude that the solution is

\[Q(t) = \frac{1}{(200 + t)^2}[(200 + t)^3 - 100(200)^2] = 200 + t - \frac{100(200)^2}{(200 + t)^2}. \]

5. For the equation

\[\frac{dy}{dt} = y^2(1 - y^2), \]

determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable. Draw the phase line. You do not need to solve the equation.

Solutions The equilibrium points are \(y = 0, 1, -1 \). When \(y < -1 \), \(\frac{dy}{dt} < 0 \), and when \(-1 < y < 0\), \(\frac{dy}{dt} > 0 \), so \(y = -1 \) is unstable, as \(\frac{dy}{dt} \) is trending away from \(y = -1 \) on either side. When \(0 < y < 1 \), \(\frac{dy}{dt} > 0 \), so \(y = 0 \) is semi-stable, as \(\frac{dy}{dt} > 0 \) on both sides of \(y = 0 \). Finally, when \(y > 1 \), \(\frac{dy}{dt} < 0 \), so \(y = 1 \) is stable, as \(\frac{dy}{dt} \) is trending toward \(y = 1 \) on either side.

6. Solve the equation

\[(x^2 + y) \, dx + (x + e^y) \, dy = 0. \]

Solution This is an equation of the form

\[M(x, y) \, dx + N(x, y) \, dy = 0, \]

where \(M(x, y) = x^2 + y \) and \(N(x, y) = x + e^y \). We check whether this equation is exact. From

\[M_y = 1, \quad N_x = 1, \]

we find that it is exact.

To solve the equation, we compute

\[M_1(x, y) = \int M(x, y) \, dx = \int x^2 + y \, dx = \frac{x^3}{3} + xy, \]

and

\[N(x, y) - \frac{\partial}{\partial y} M_1(x, y) = x + e^y - \left(\frac{x^3}{3} + xy \right)_y = x + e^y - x = e^y. \]

Therefore, the solution \(y \) satisfies the equation

\[M_1(x, y) + \int N(x, y) - \frac{\partial}{\partial y} M_1(x, y) \, dy = 0, \]

which is

\[\frac{x^3}{3} + xy + \int e^y \, dy = \frac{x^3}{3} + xy + e^y + C = 0, \]

where \(C \) is an arbitrary constant.
7. Solve the equation

\[(2y + 3x) \, dx + x \, dy = 0.\]

Solution This is an equation of the form

\[M(x, y) \, dx + N(x, y) \, dy = 0,\]

where \(M(x, y) = 2y + 3x\) and \(N(x, y) = x\). We check whether this equation is exact. From

\[M_y = 2, \quad N_x = 1,\]

we find that it is not exact.

We then compute

\[\frac{M_y - N_x}{N} = \frac{2 - 1}{x} = \frac{1}{x}, \quad \frac{N_x - M_y}{M} = \frac{1 - 2}{2y + 3x} = -\frac{1}{2y + 3x}.\]

As the first expression is a function of only \(x\), our integrating factor is

\[\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx} = e^{\int \frac{1}{x} \, dx} = e^{\ln x} = x.\]

Then, our scaled equation

\[(2xy + 3x^2) \, dx + x^2 \, dy = 0,\]

with \(M(x, y) = 2xy + 3x^2\) and \(N(x, y) = x^2\), is exact, as \(M_y = N_x = 2x\).

To solve the equation, we compute

\[M_1(x, y) = \int M(x, y) \, dx = \int 2xy + 3x^2 \, dx = x^2 y + x^3,\]

and

\[N(x, y) - \frac{\partial}{\partial y} M_1(x, y) = x^2 - (x^2 y + x^3)_y = x^2 - x^2 = 0.\]

Therefore, the solution \(y\) satisfies the equation

\[M_1(x, y) + \int N(x, y) - \frac{\partial}{\partial y} M_1(x, y) \, dy = 0,\]

which is

\[x^2 y + x^3 + \int 0 \, dy = x^2 y + x^3 + C = 0,\]

where \(C\) is an arbitrary constant.