Richardson Extrapolation

We have seen that the accuracy of methods for computing derivatives of a function $f(x)$ depends on the spacing between points at which f is evaluated, and that the approximation tends to the exact value as this spacing tends to 0.

Suppose that a uniform spacing h is used. We denote by $F(h)$ the approximation computed using the spacing h, from which it follows that the exact value is given by $F(0)$. Let p be the order of accuracy in our approximation; that is,

$$F(h) = a_0 + a_1 h^p + O(h^r), \quad r > p,$$

where a_0 is the exact value $F(0)$. Then, if we choose a value for h and compute $F(h)$ and $F(h/q)$ for some positive integer q, then we can neglect the $O(h^r)$ terms and solve a system of two equations for the unknowns a_0 and a_1, thus obtaining an approximation that is rth order accurate. If we can describe the error in this approximation in the same way that we can describe the error in our original approximation $F(h)$, we can repeat this process to obtain an approximation that is even more accurate.

This process of extrapolating from $F(h)$ and $F(h/q)$ to approximate $F(0)$ with a higher order of accuracy is called Richardson extrapolation. In a sense, Richardson extrapolation is similar in spirit to Aitken’s Δ^2 method, as both methods use assumptions about the convergence of a sequence of approximations to “solve” for the exact solution, resulting in a more accurate method of computing approximations.

Example Consider the function

$$f(x) = \frac{\sin^2 \left(\frac{\sqrt{x^2 + 2}}{\cos x^2 - 2} \right)}{\sin \left(\frac{\sqrt{x^2 - 1}}{\sqrt{x^2 + 1}} \right)}.$$

Our goal is to compute $f'(0.25)$ as accurately as possible. Using a centered difference approximation,

$$f'(x) = \frac{f(x + h) - f(x - h)}{2h} + O(h^2),$$

with $x = 0.25$ and $h = 0.01$, we obtain the approximation

$$f'(0.25) \approx \frac{f(0.26) - f(0.24)}{0.02} = -9.06975297890147,$$
which has absolute error 3.0×10^{-3}, and if we use $h = 0.005$, we obtain the approximation

$$f'(0.25) \approx \frac{f(0.255) - f(0.245)}{0.01} = -9.06746429492149,$$

which has absolute error 7.7×10^{-4}. As expected, the error decreases by a factor of approximately 4 when we halve the step size h, because the error in the centered difference formula is of $O(h^2)$.

We can obtain a more accurate approximation by applying Richardson Extrapolation to these approximations. We define the function $N_1(h)$ to be the centered difference approximation to $f'(0.25)$ obtained using the step size h. Then, with $h = 0.01$, we have

$$N_1(h) = -9.06975297890147, \quad N_1(h/2) = -9.066746429492149,$$

and the exact value is given by $N_1(0) = -9.06669877124279$. Because the error in the centered difference approximation satisfies

$$N_1(h) = N_1(0) + K_1 h^2 + K_2 h^4 + K_3 h^6 + O(h^8),$$

where the constants K_1, K_2 and K_3 depend on the derivatives of $f(x)$ at $x = 0.25$, it follows that the new approximation

$$N_2(h) = N_1(h/2) + \frac{N_1(h/2) - N_1(h)}{2^2 - 1} = -9.06670140026149,$$

has fourth-order accuracy. Specifically, if we denote the exact value by $N_2(0)$, we have

$$N_2(h) = N_2(0) + \tilde{K}_2 h^4 + \tilde{K}_3 h^6 + O(h^8),$$

where the constants \tilde{K}_2 and \tilde{K}_3 are independent of h.

Now, suppose that we compute

$$N_1(h/4) = \frac{f(x + h/4) - f(x - h/4)}{2(h/4)} = \frac{f(0.2525) - f(0.2475)}{0.005} = -9.06689027527046,$$

which has an absolute error of 1.9×10^{-4}, we can use extrapolation again to obtain a second fourth-order accurate approximation,

$$N_2(h/2) = N_1(h/4) + \frac{N_1(h/4) - N_1(h/2)}{3} = -9.06669893538678,$$

which has absolute error of 1.7×10^{-7}. It follows from the form of the error in $N_2(h)$ that we can use extrapolation on $N_2(h)$ and $N_2(h/2)$ to obtain a sixth-order accurate approximation,

$$N_3(h) = N_2(h/2) + \frac{N_2(h/2) - N_2(h)}{2^4 - 1} = -9.06669877106180,$$

which has an absolute error of 1.8×10^{-10}. □