This assignment is due in class on Tuesday, September 1.

1. Use the Intermediate Value Theorem and Rolle’s Theorem to show that the graph of \(f(x) = x^3 + 2x + k \) crosses the x-axis exactly once, regardless of the value of the constant \(k \). \textit{Hint:} Use the derivative.

2. Find the second Taylor polynomial \(P_2(x) \) for the function \(f(x) = e^x \cos x \) about \(x_0 = 0 \).

 (a) Use \(P_2(0.5) \) to approximate \(f(0.5) \). Find an upper bound on the error \(|f(0.5) - P_2(0.5)| \) using Taylor’s Theorem, and compare it to the actual error.

 (b) Find an upper bound for the error \(|f(x) - P_2(x)| \) in using \(P_2(x) \) to approximate \(f(x) \) on the interval \([0, 1]\).

3. Write an algorithm that accepts a real number \(x \) and a nonnegative integer \(n \) and computes an approximation to \(e^x \) using the \(n \)th Taylor polynomial \(P_n(x) \) with center \(x_0 = 0 \). Find a value of \(n \) necessary for \(P_n(x) \) to approximate \(e^x \) to within \(10^{-6} \) on \([0, 0.5]\). Show that with this value of \(n \), your algorithm approximates \(e^x \) to this degree of accuracy at \(x = 0.25 \).

4. A function \(f : [a, b] \to \mathbb{R} \) is said to satisfy a \textit{Lipschitz condition} with Lipschitz constant \(L \) on \([a, b]\) if, for every \(x, y \in [a, b] \), we have \(|f(x) - f(y)| \leq L|x - y| \). Show that if \(f \) satisfies a Lipschitz condition with Lipschitz constant \(L \) on an interval \([a, b]\), then \(f \) is continuous on \([a, b]\).