These notes correspond to Sections 7.5 and 8.3 in the text.

The Eigenvalue Problem: The Practical QR Algorithm

The Unsymmetric Eigenvalue Problem

The efficiency of the QR Iteration for computing the eigenvalues of an \(n \times n \) matrix \(A \) is significantly improved by first reducing \(A \) to a Hessenberg matrix \(H \), so that only \(O(n^2) \) operations per iteration are required, instead of \(O(n^3) \). However, the iteration can still converge very slowly, so additional modifications are needed to make the QR Iteration a practical algorithm for computing the eigenvalues of a general matrix.

In general, the \(p \)th subdiagonal entry of \(H \) converges to zero at the rate

\[
\frac{\lambda_{p+1}}{\lambda_p},
\]

where \(\lambda_p \) is the \(p \)th largest eigenvalue of \(A \) in magnitude. It follows that convergence can be particularly slow if eigenvalues are very close to one another in magnitude. Suppose that we shift \(H \) by a scalar \(\mu \), meaning that we compute the QR factorization of \(H - \mu I \) instead of \(H \), and then update \(H \) to obtain a new Hessenberg \(\tilde{H} \) by multiplying the QR factors in reverse order as before, but then adding \(\mu I \). Then, we have

\[
\tilde{H} = RQ + \mu I = Q^T(H - \mu I)Q + \mu I = Q^THQ - \mu Q^TQ + \mu I = Q^THQ - \mu I + \mu I = Q^THQ.
\]

So, we are still performing an orthogonal similarity transformation of \(H \), but with a different \(Q \). Then, the convergence rate becomes \(|\lambda_{p+1} - \mu|/|\lambda_p - \mu| \). Then, if \(\mu \) is close to an eigenvalue, convergence of a particular subdiagonal entry will be much more rapid.

In fact, suppose \(H \) is unreduced, and that \(\mu \) happens to be an eigenvalue of \(H \). When we compute the QR factorization of \(H - \mu I \), which is now singular, then, because the first \(n - 1 \) columns of \(H - \mu I \) must be linearly independent, it follows that the first \(n - 1 \) columns of \(R \) must be linearly independent as well, and therefore the last row of \(R \) must be zero. Then, when we compute \(RQ \), which involves rotating columns of \(R \), it follows that the last row of \(RQ \) must also be zero. We then add \(\mu I \), but as this only changes the diagonal elements, we can conclude that \(\tilde{h}_{n,n-1} = 0 \). In other words, \(\tilde{H} \) is not an unreduced Hessenberg matrix, and deflation has occurred in one step.

If \(\mu \) is not an eigenvalue of \(H \), but is still close to an eigenvalue, then \(H - \mu I \) is nearly singular, which means that its columns are nearly linearly dependent. It follows that \(r_{nn} \) is small, and it can
be shown that \(h_{n,n-1} \) is also small, and \(h_{nn} \approx \mu \). Therefore, the problem is nearly decoupled, and \(\mu \) is revealed by the structure of \(\tilde{H} \) as an approximate eigenvalue of \(H \). This suggests using \(h_{nn} \) as the shift \(\mu \) during each iteration, because if \(h_{n,n-1} \) is small compared to \(h_{nn} \), then this choice of shift will drive \(h_{n,n-1} \) toward zero. In fact, it can be shown that this strategy generally causes \(h_{n,n-1} \) to converge to zero \textit{quadratically}, meaning that only a few similarity transformations are needed to achieve decoupling. This improvement over the linear convergence rate reported earlier is due to the changing of the shift during each step.

\textbf{Example} Consider the 2 \(\times \) 2 matrix

\[
H = \begin{bmatrix} a & b \\ \epsilon & 0 \end{bmatrix}, \quad \epsilon > 0,
\]

that arises naturally when using \(h_{nn} \) as a shift. To compute its QR factorization of \(H \), we perform a single Givens rotation to obtain \(H = GR \), where

\[
G = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}, \quad c = \frac{a}{\sqrt{a^2 + \epsilon^2}}, \quad s = \frac{\epsilon}{\sqrt{a^2 + \epsilon^2}}.
\]

Performing the similarity transformation \(\tilde{H} = G^T H G \) yields

\[
\tilde{H} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a & b \\ \epsilon & 0 \end{bmatrix} \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} ac + bs & bc - \epsilon s \\ \epsilon c & -\epsilon s \end{bmatrix} = \begin{bmatrix} ac^2 + bcs + \epsilon cs & bc^2 - acs - \epsilon s^2 \\ -acs - bs^2 + \epsilon c^2 & -bcs + as^2 - \epsilon cs \end{bmatrix} = \begin{bmatrix} a + bcs & bc^2 - \epsilon \\ -bs^2 & -bcs \end{bmatrix}.
\]

We see that the one subdiagonal element is

\[
-bs^2 = -b \frac{\epsilon^2}{\epsilon^2 + a^2},
\]

cmpared to the original element \(\epsilon \). It follows that if \(\epsilon \) is small compared to \(a \) and \(b \), then subsequent \(QR \) steps will cause the subdiagonal element to converge to zero \textit{quadratically}. For example, if

\[
H = \begin{bmatrix} 0.6324 & 0.2785 \\ 0.0975 & 0.5469 \end{bmatrix},
\]

then the value of \(h_{21} \) after each of the first three \(QR \) steps is 0.1575, \(-0.0037\), and \(2.0876 \times 10^{-5} \). \(\square\)
This shifting strategy is called the *single shift strategy*. Unfortunately, it is not very effective if \(H \) has complex eigenvalues. An alternative is the *double shift strategy*, which is used if the two eigenvalues, \(\mu_1 \) and \(\mu_2 \), of the lower-right \(2 \times 2 \) block of \(H \) are complex. Then, these two eigenvalues are used as shifts in consecutive iterations to achieve quadratic convergence in the complex case as well. That is, we compute

\[
\begin{align*}
H - \mu_1 I &= U_1 R_1 \\
H_1 &= R_1 U_1 + \mu_1 I \\
H_1 - \mu_2 I &= U_2 R_2 \\
H_2 &= R_2 U_2 + \mu_2 I.
\end{align*}
\]

To avoid complex arithmetic when using complex shifts, the *double implicit shift strategy* is used. We first note that

\[
U_1 U_2 R_2 R_1 = U_1 (H_1 - \mu_2 I) R_1 \\
= U_1 H_1 R_1 - \mu_2 U_1 R_1 \\
= U_1 (R_1 U_1 + \mu_1 I) R_1 - \mu_2 (H - \mu_1 I) \\
= U_1 R_1 U_1 R_1 + \mu_1 U_1 R_1 - \mu_2 (H - \mu_1 I) \\
= (H - \mu_1 I)^2 + \mu_1 (H - \mu_1 I) - \mu_2 (H - \mu_1 I) \\
= H^2 - 2 \mu_1 H + \mu_1^2 I + \mu_1 H - \mu_1^2 I - \mu_2 I + \mu_1 \mu_2 I \\
= H^2 - (\mu_1 + \mu_2) H + \mu_1 \mu_2 I.
\]

Since \(\mu_1 = a + bi \) and \(\mu_2 = a - bi \) are a complex-conjugate pair, it follows that \(\mu_1 + \mu_2 = ab \) and \(\mu_1 \mu_2 = a^2 + b^2 \) are real. Therefore, \(U_1 U_2 R_2 R_1 = (U_1 U_2)(R_2 R_1) \) represents the QR factorization of a real matrix.

Furthermore,

\[
H_2 = R_2 U_2 + \mu_2 I = U_2^T H_1 U_2 = U_2^T (R_1 U_1 + \mu_1 I) U_2 = U_2^T U_1^T H U_1 U_2.
\]

That is, \(U_1 U_2 \) is the orthogonal matrix that implements the similarity transformation of \(H \) to obtain \(H_2 \). Therefore, we could use exclusively real arithmetic by forming \(M = H^2 - (\mu_1 + \mu_2) H + \mu_1 \mu_2 I \), compute its QR factorization to obtain \(M = Z R \), and then compute \(H_2 = Z^T H Z \), since \(Z = U_1 U_2 \), in view of the uniqueness of the QR decomposition. However, because \(M \) is computed by squaring \(H \), which requires \(O(n^3) \) operations. Therefore, this is not a practical approach.

We can work around this difficulty using the Implicit Q Theorem. Instead of forming \(M \) in its entirety, we only form its first column, which, being a second-degree polynomial of a Hessenberg matrix, has only three nonzero entries. We compute a Householder transformation \(P_0 \) that makes this first column a multiple of \(e_1 \). Then, we compute \(P_0 H P_0 \), which is no longer Hessenberg, because it operates on the first three rows and columns of \(H \). Finally, we apply a series of Householder
reflections $P_1, P_2, \ldots, P_{n-2}$ that restore Hessenberg form. Because these reflections are not applied to the first row or column, it follows that if we define $\tilde{Z} = P_0 P_1 P_2 \cdots P_{n-2}$, then Z and \tilde{Z} have the same first column. Since both matrices implement similarity transformations that preserve the Hessenberg form of H, it follows from the Implicit Q Theorem that Z and \tilde{Z} are essentially equal, and that they essentially produce the same updated matrix H_2. This variation of a Hessenberg QR step is called a Francis QR step.

A Francis QR step requires $10n^2$ operations, with an additional $10n^2$ operations if orthogonal transformations are being accumulated to obtain the entire real Schur decomposition. Generally, the entire QR algorithm, including the initial reduction to Hessenberg form, requires about $10n^3$ operations, with an additional $15n^3$ operations to compute the orthogonal matrix Q such that $A = QTQ^T$ is the real Schur decomposition of A.

The Symmetric Eigenvalue Problem

In the symmetric case, there is no need for a double-shift strategy, because the eigenvalues are real. However, the Implicit Q Theorem can be used for a different purpose: computing the similarity transformation to be used during each iteration without explicitly computing $T - \mu I$, where T is the tridiagonal matrix that is to be reduced to diagonal form. Instead, the first column of $T - \mu I$ can be computed, and then a Householder transformation to make it a multiple of e_1. This can then be applied directly to T, followed by a series of Givens rotations to restore tridiagonal form. By the Implicit Q Theorem, this accomplishes the same effect as computing the QR factorization $UR = T - \mu I$ and then computing $\tilde{T} = RU + \mu I$.

While the shift $\mu = t_{nn}$ can always be used, it is actually more effective to use the Wilkinson shift, which is given by

$$\mu = t_{nn} + d - \text{sign}(d) \sqrt{d^2 + t_{n,n-1}^2}, \quad d = \frac{t_{n-1,n-1} - t_{nn}}{2}.$$

This expression yields the eigenvalue of the lower 2×2 block of T that is closer to t_{nn}. It can be shown that this choice of shift leads to cubic convergence of $t_{n,n-1}$ to zero.

The symmetric QR algorithm is much faster than the unsymmetric QR algorithm. A single QR step requires about $30n$ operations, because it operates on a tridiagonal matrix rather than a Hessenberg matrix, with an additional $6n^2$ operations for accumulating orthogonal transformations. The overall symmetric QR algorithm requires $4n^3/3$ operations to compute only the eigenvalues, and approximately $8n^3$ additional operations to accumulate transformations. Because a symmetric matrix is unitarily diagonalizable, then the columns of the orthogonal matrix Q such that $Q^T A Q$ is diagonal contains the eigenvectors of A.