(1) (Serge Lang p93/1) Let \(A_1, \cdots, A_r \) be vectors in \(\mathbb{R}^n \). Let \(W \) be the set of vectors \(B \) in \(\mathbb{R}^n \) such that \(B \cdot A_i = 0 \) for every \(i = 1, \cdots, r \). Show that \(W \) is a subspace of \(\mathbb{R}^n \).

Solution: Let \(B_1, B_2 \in W \). Let \(\alpha, \beta \) be numbers. Then \(B_1 \cdot A_i = 0 \) and \(B_2 \cdot A_i = 0 \) for every \(i = 1, \cdots, r \). For every \(i = 1, \cdots, r \),
\[
(\alpha B_1 + \beta B_2) \cdot A_i = \alpha B_1 \cdot A_i + \beta B_2 \cdot A_i = 0.
\]
So, \(\alpha B_1 + \beta B_2 \in W \) and hence \(W \) is a subspace.

(2) (Serge Lang p93/5) Let \(V \) be a subspace of \(\mathbb{R}^n \). Let \(W \) be the set of elements of \(\mathbb{R}^n \) which are perpendicular to every element of \(V \). Show that \(W \) is a subspace of \(\mathbb{R}^n \). This subspace \(W \) is often denoted by \(V^\perp \), and is called \(V \) perp, or also the **orthogonal complement of** \(V \).

Solution: Let \(w_1, w_2 \in W \) and \(\alpha, \beta \) be two numbers. Then \(w_1 \cdot v = 0 \) and \(w_2 \cdot v = 0 \) for any \(v \in V \). For any vector \(v \in V \),
\[
(\alpha w_1 + \beta w_2) \cdot v = \alpha w_1 \cdot v + \beta w_2
\]
\[
= 0.
\]
So, \(\alpha w_1 + \beta w_2 \in W \) and hence \(W \) is a subspace.