(1) If x_0 is an accumulation point of a set $A \subset (X, d)$, show that any neighbourhood of x_0 contains infinitely many points of A.

Solution: Since x_0 is an accumulation point of $A \subset X$, for each $n = 1, 2, \cdots$,

$$\left[B \left(x_0, \frac{1}{n}\right) \setminus \{x_0\}\right] \cap A \neq \emptyset.$$

For each $n = 1, 2, \cdots$, choose $x_n \in \left[B \left(x_0, \frac{1}{n}\right) \setminus \{x_0\}\right] \cap A$. Given $\epsilon > 0$, by Archimedean property there exists a positive integer N such that $N > \frac{1}{\epsilon}$. For all $n \geq N$,

$$d(x_n, x_0) < \frac{1}{n} \leq \frac{1}{N} < \epsilon,$$

that is, for all $n \geq N$,

$$x_n \in B(x_0, \epsilon) \cap A \subset A.$$

In fact, we just proved that if x_0 is an accumulation point of $A \subset X$, then there exists a sequence $(x_n) \subset A$ such that $x_n \to x_0$.

(2) Let (X, d) be a metric space and $A \subset X$. Show that \bar{A} is the smallest closed set containing A.

Solution: By the definition $\bar{A} = A \cup A'$, clearly $A \subset \bar{A}$.

First we show that \bar{A} is closed. Let $x \in X \setminus \bar{A}$. Since $x \notin \bar{A}$ ($x \notin A$ and $x \notin A'$), there exist an open set $U(x)$ in X such that $U(x) \cap A = \emptyset$ and so $U(x) \cap A' = \emptyset$ (If $U(x)$ contains an accumulation point of A, $U(x) \cap A$ must be nonempty). Thus, $U(x) \cap \bar{A} = \emptyset$. This means that $U(x) \subset X \setminus \bar{A}$ i.e. $X \setminus \bar{A}$ is open. Hence, \bar{A} is closed.

Next we show that \bar{A} is the smallest closed set containing A. Let F be a closed set containing A and let $x \notin F$. Then
Let \(x \in X \setminus F \). Since \(X \setminus F \) is open, there exists an open neighbourhood of \(x \), \(U(x) \) (for instance \(U(x) = B(x, \epsilon) \) for some \(\epsilon > 0 \)) such that \(U(x) \subset X \setminus F \subset X \setminus A \). This implies that \(U(x) \cap A = \emptyset \). Hence, \(x \not\in A' \). Therefore, \(\tilde{A} \subset F \).

Since \(\tilde{A} \) is the smallest closed set containing \(A \), \(\tilde{A} \) can be written as

\[
\tilde{A} = \bigcap \{ F \subset X : F \text{ is closed}, A \subset F \}.
\]

(3) Let \((X,d)\) be a metric space and \(A \subset X \). Show that \(x \in \tilde{A} \) if and only if \(\forall \) open set \(U(x) \) in \(X \), \(U(x) \cap A \neq \emptyset \).

Solution: (\(\Rightarrow\)) Let \(x \in \tilde{A} \). Then \(x \in A \) or \(x \in A' \). Let \(U(x) \) be any open set containing \(x \). If \(x \in A \) then we are done. Suppose that \(x \not\in A \). Then \(x \in A' \) and so \(U(x) \cap A = (U(x) \setminus \{x\}) \cap A \neq \emptyset \).

(\(\Leftarrow\)) Suppose that \(\forall \) open set \(U(x) \) in \(X \), \(U(x) \cap A \neq \emptyset \). If \(x \in A \). Then we are done. If not, by the assumption \((U(x) \setminus \{x\}) \cap A = U(x) \cap A \neq \emptyset \). So, \(x \in A' \).

(4) Show that \(\overline{A \cup B} = \overline{A} \cup \overline{B} \) and \(\overline{A} \cap \overline{B} \subset \overline{A \cap B} \). Given an example that shows \(\overline{A \cap B} \neq \overline{A} \cap \overline{B} \).

Solution: First we show that if \(F_1 \) and \(F_2 \) be two closed subsets of a metric space \(X \), then \(F_1 \cup F_2 \) is also closed in \(X \). Let \(x \in X \setminus (F_1 \cup F_2) = (X \setminus F_1) \cap (X \setminus F_2) \). Then \(x \in X \setminus F_1 \) and \(x \in X \setminus F_2 \). Since both \(X \setminus F_1 \) and \(X \setminus F_2 \) are open in \(X \), there exist \(\epsilon_1, \epsilon_2 > 0 \) such that \(B(x, \epsilon_1) \subset X \setminus F_1 \) and \(B(x, \epsilon_2) \subset X \setminus F_2 \). Let \(\epsilon = \min\{\epsilon_1, \epsilon_2\} \). Then \(B(x, \epsilon) \subset X \setminus (F_1 \cup F_2) \) and so \(X \setminus (F_1 \cup F_2) \) is an open set.

\[
A \subset \overline{A}, B \subset \overline{B} \Rightarrow A \cup B \subset \overline{A} \cup \overline{B} \\
\Rightarrow \overline{A \cup B} \subset \overline{A} \cup \overline{B} \text{ (since } \overline{A} \cup \overline{B} \text{ is closed).}
\]

On the other hand,

\[
A, B \subset A \cup B \Rightarrow A, B \subset \overline{A \cup B} \\
\Rightarrow \overline{A}, \overline{B} \subset \overline{A \cup B} \\
\Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}.
\]
Therefore, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

$$
\begin{align*}
A \cap B \subset A, B &\implies A \cap B \subset \overline{A}, \overline{B} \\
\implies \overline{A \cap B} \subset \overline{A}, \overline{B} \\
\implies \overline{A \cap B} \subset \overline{A \cap B}.
\end{align*}
$$

Let X be \mathbb{R} with the usual Euclidean metric. Let $A = \left[0, \frac{1}{2} \right]$ and $B = \left[\frac{1}{2}, 0 \right]$. Then $A \cap B = \emptyset$ while $\overline{A} \cap \overline{B} = \left[0, \frac{1}{2} \right] \cap \left[\frac{1}{2}, 0 \right] = \left\{ \frac{1}{2} \right\}$. This example shows that it is not necessarily true that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

(5) Let $x = (\xi_j) \in \ell^p$ with $1 \leq p < \infty$. Show that given $\epsilon > 0$ there exists a positive integer $N > 0$ such that $\sum_{j=N+1}^{\infty} |\xi_j|^p < \epsilon$.

Solution: Let us assume contrary. That is, let us assume that there exists $\epsilon > 0$ such that $\forall N = 1, 2, \ldots$, $\sum_{j=N+1}^{\infty} |\xi_j|^p > \epsilon$. Let $s = \sum_{j=1}^{\infty} |\xi_j|^p < \infty$. Then $\lim_{n \to \infty} \sum_{j=1}^{n} |\xi_j|^p = s$. So, there exists a positive integer N' such that $\left| \sum_{j=1}^{n} |\xi_j|^p - s \right| < \epsilon$, $\forall n \geq N'$. That is, $s - \epsilon < \sum_{j=1}^{n} |\xi_j|^p < s + \epsilon$, $\forall n \geq N$. In particular, $s - \epsilon < \sum_{j=1}^{N'} |\xi_j|^p < s + \epsilon$. Adding to the last inequality $\sum_{j=N'+1}^{\infty} |\xi_j|^p$, we obtain

$$
\sum_{j=N'+1}^{\infty} |\xi_j|^p < s < s + \epsilon + \sum_{j=N'+1}^{\infty} |\xi_j|^p.
$$
This is a contradiction since \(\sum_{j=N'+1}^{\infty} |\xi_j|^p > \epsilon \).

(6) Show that a mapping \(T : X \rightarrow Y \) is continuous if and only if the inverse image of any closed set \(F \subset Y \) is closed in \(X \).

Solution: (\(\Rightarrow \)) Suppose that \(T : X \rightarrow Y \) is continuous. Let \(F \) be a closed set in \(Y \). Then \(Y \setminus F \) is open in \(Y \). Since \(T \) is continuous, \(T^{-1}(Y \setminus F) = X \setminus T^{-1}(F) \) is open in \(X \) i.e. \(T^{-1}(F) \) is closed in \(X \).

(\(\Leftarrow \)) Suppose that the inverse image of any closed set \(F \subset Y \) is closed in \(X \). Let \(U \) be an open set in \(Y \). Then \(Y \setminus U \) is closed in \(Y \). So by the assumption, \(T^{-1}(Y \setminus U) = X \setminus T^{-1}(U) \) is closed in \(X \) i.e \(T^{-1}(U) \) is open in \(X \). Since the choice of \(U \) was arbitrary, \(T \) is continuous.

(7) Show that the image of an open set under a continuous mapping need not be open.

Solution: Let \(X \) be \(\mathbb{R} \) with the usual Euclidean metric. The function \(f : X \rightarrow X \) defined by \(f(x) = x^2 \) is continuous. \((-1, 1)\) is open in \(X \) but \(f(-1, 1) = [0, 1) \) is not open in \(X \).