These notes correspond to Section 3.2 in the text.

The Wronskian

Now that we know how to solve a linear second-order homogeneous ODE

\[y'' + p(t)y' + q(t)y = 0 \]

in certain cases, we establish some theory about general equations of this form. First, we introduce some notation. We define a second-order linear differential operator \(L \) by

\[L[y] = y'' + p(t)y' + q(t)y. \]

Then, a initial value problem with a second-order homogeneous linear ODE can be stated as

\[L[y] = 0, \quad y(t_0) = y_0, \quad y'(t_0) = z_0. \]

We state a result concerning existence and uniqueness of solutions to such ODE, analogous to the Existence-Uniqueness Theorem for first-order ODE.

Theorem (Existence-Uniqueness) The initial value problem

\[L[y] = y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = z_0 \]

has a unique solution on an open interval \(I \) containing the point \(t_0 \) if \(p, q \) and \(g \) are continuous on \(I \). The solution is twice differentiable on \(I \).

Now, suppose that we have obtained two solutions \(y_1 \) and \(y_2 \) of the equation \(L[y] = 0 \). Then

\[y_1'' + p(t)y_1' + q(t)y_1 = 0, \quad y_2'' + p(t)y_2' + q(t)y_2 = 0. \]

Let \(y = c_1y_1 + c_2y_2 \), where \(c_1 \) and \(c_2 \) are constants. Then

\[
L[y] = L[c_1y_1 + c_2y_2] = (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2) \\
= c_1y_1'' + c_2y_2'' + c_1p(t)y_1' + c_2p(t)y_2' + c_1q(t)y_1 + c_2q(t)y_2 \\
= c_1(y_1'' + p(t)y_1' + q(t)y_1) + c_2(y_2'' + p(t)y_2' + q(t)y_2) \\
= 0.
\]

We have just established the following theorem.

Theorem (Superposition) Let \(y_1 \) and \(y_2 \) be solutions of the equation \(L[y] = 0 \). Then, for any constants \(c_1 \) and \(c_2 \), the linear combination

\[c_1y_1 + c_2y_2 \]

is also a solution.
Now that we can obtain infinitely many solutions of \(L[y] = 0 \) from two solutions \(y_1 \) and \(y_2 \), it is natural to ask whether all solutions of \(L[y] = 0 \) are of the form \(c_1 y_1 + c_2 y_2 \), for constants \(c_1 \) and \(c_2 \). For this to be the case, it is necessary to be able to satisfy any given initial conditions.

Let \(y(t) = c_1 y_1(t) + c_2 y_2(t) \). Substituting this solution into the initial conditions \(y(t_0) = y_0 \) and \(y'(t_0) = z_0 \), we obtain the system of equations

\[
\begin{align*}
 c_1 y_1(t_0) + c_2 y_2(t_0) &= y_0, \\
 c_2 y_1'(t_0) + c_2 y_2'(t_0) &= z_0,
\end{align*}
\]

or, in matrix vector form,

\[
Y(y_1, y_2)(t_0) \mathbf{c} = \mathbf{u}_0,
\]

where

\[
Y(y_1, y_2)(t_0) = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \quad \mathbf{u}_0 = \begin{bmatrix} y_0 \\ z_0 \end{bmatrix}.
\]

From linear algebra, this system has a unique solution for any right-hand side \(\mathbf{u}_0 \) if and only if the coefficient matrix \(Y(y_1, y_2)(t_0) \) has a nonzero determinant. That is, we must have

\[
W(y_1, y_2)(t_0) = \det Y(y_1, y_2)(t_0) = y_1(t_0)y_2'(t_0) - y_2(t_0)y_1'(t_0) \neq 0.
\]

The function \(W(y_1, y_2)(t) \), which is a function of \(t \) but depends on the solutions \(y_1(t) \) and \(y_2(t) \), is called the Wronskian of \(y_1 \) and \(y_2 \). If the Wronskian is nonzero, then we can satisfy any initial conditions. We have just established the following theorem.

Theorem Let \(y_1 \) and \(y_2 \) be two solutions of \(L[y] = 0 \). Then there exist constants \(c_1 \) and \(c_2 \) so that

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

satisfies \(L[y] = 0 \) and the initial conditions

\[
y(t_0) = y_0, \quad y'(t_0) = z_0
\]

if and only if the Wronskian

\[
W = y_1 y_2' - y_2 y_1'
\]

is nonzero at \(t_0 \).

We can actually make a stronger statement: if the Wronskian is nonzero, then not only can we obtain a solution for any initial conditions, but we can actually describe all solutions of the initial value problem. That is, there are no other solutions that are not a linear combination of \(y_1 \) and \(y_2 \). This is formally stated in the following theorem.

Theorem Let \(y_1 \) and \(y_2 \) be solutions of \(L[y] = 0 \). Then every solution of \(L[y] = 0 \) is of the form

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

if and only if the Wronskian of \(y_1 \) and \(y_2 \) is nonzero at a point \(t_0 \).

Because the linear combination

\[
y(t) = c_1 y_1(t) + c_2 y_2(t)
\]

describes all solutions of the equation \(L[y] = 0 \), it is called the general solution of this equation. We also say that the solutions \(y_1 \) and \(y_2 \) form a fundamental set of solutions of the equation.
Example Consider the ODE

\[y'' + 4y' + 4y = 0. \]

Two solutions of this ODE are \(y_1(t) = e^{-2t} \) and \(y_2(t) = te^{-2t} \). Their Wronskian is

\[
W(y_1, y_2)(t) = e^{-2t}(te^{-2t})' - te^{-2t}(e^{-2t})' \\
= e^{-2t}(e^{-2t} - 2te^{-2t}) - te^{-2t}(-2e^{-2t}) \\
= e^{-4t} - 2te^{-4t} + 2te^{-4t} \\
= e^{-4t},
\]

which is nonzero. Therefore, \(y_1 \) and \(y_2 \) form a fundamental set of solutions, and all solutions of the equation are of the form \(c_1y_1 + c_2y_2 \). □

Previously, when solving the constant-coefficient equation

\[y'' + py' + qy = 0, \]

where the roots \(\lambda_1 \) and \(\lambda_2 \) of the characteristic equation \(\lambda^2 + p\lambda + q = 0 \) are real and distinct, we called the solution

\[y(t) = c_1e^{\lambda_1t} + c_2e^{\lambda_2t} \]

the general solution. This is justified because at any time \(t \),

\[
W(e^{\lambda_1t}, e^{\lambda_2t})(t) = e^{\lambda_1t}(e^{\lambda_2t})' - e^{\lambda_2t}(e^{\lambda_1t})' \\
= \lambda_2e^{\lambda_1t}e^{\lambda_2t} - \lambda_1e^{\lambda_1t}e^{\lambda_2t} \\
= e^{\lambda_1t}e^{\lambda_2t}(\lambda_2 - \lambda_1) \\

\ne 0,
\]

so by the preceding theorems, \(y(t) \) actually is the general solution in the sense in which we have just defined it, and \(\{e^{\lambda_1t}, e^{\lambda_2t}\} \) is a fundamental set of solutions. If \(\lambda_1 = \lambda_2 \), however, we do not have a fundamental set of solutions, as the Wronskian would be zero. Later, we will learn how to obtain a second solution which, paired with \(e^{\lambda_1t} \), will form a fundamental set of solutions.

For the more general linear homogeneous second-order ODE, we can obtain a fundamental set of solutions by solving two specific initial value problems.

Theorem Let \(p(t) \) and \(q(t) \) be continuous on an open interval \(I \) containing a point \(t_0 \). Let \(y_1 \) be the unique solution of the ODE

\[L[y] = y'' + p(t)y' + q(t)y = 0 \]

with initial conditions

\[y(t_0) = 1, \quad y'(t_0) = 0; \]

and let \(y_2 \) be the unique solution of \(L[y] = 0 \) with initial conditions

\[y(t_0) = 0, \quad y'(t_0) = 1. \]

Then \(y_1 \) and \(y_2 \) form a fundamental set of solutions of \(L[y] = 0 \).

To prove this theorem, we simply note that

\[
W(y_1, y_2)(t_0) = \det \left(\begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix} \right) = \det \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 1(1) - 0(0) = 1 \neq 0,
\]
which proves that \(\{y_1(t), y_2(t)\} \) is a fundamental set of solutions.

Example Consider the ODE

\[y'' - 3y' + 2y = 0. \]

Its characteristic equation is \(\lambda^2 - 3\lambda + 2 = 0 \), which has roots \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \). Therefore, the general solution is \(y(t) = c_1 e^t + c_2 e^{2t} \). From

\[
y(0) = c_1 + c_2, \quad y'(0) = c_1 + 2c_2,
\]

we find that the solution \(w_1(t) = 2e^t - e^{2t} \) satisfies the initial conditions

\[
w_1(0) = 1, \quad w_1'(0) = 0.
\]

Similarly, the solution \(w_2(t) = -e^t + e^{2t} \) satisfies the initial conditions

\[
w_2(0) = 0, \quad w_2'(0) = 1.
\]

Then \(\{w_1, w_2\} \) is a fundamental set of solutions of the ODE. \(\square \)

We conclude by deriving a simple formula for the Wronskian of any fundamental set of solutions \(\{y_1, y_2\} \) of \(L[y] = 0 \). Because they are solutions, we have

\[
y''_1 + p(t)y'_1 + q(t)y_1 = 0, \quad y''_2 + p(t)y'_2 + q(t)y_2 = 0.
\]

Multiplying the first equation by \(y_2 \) and the second equation by \(y_1 \), and then subtracting the first equation from the second, we obtain

\[
y''_2y_1 - y'_1y_2 + p(t)(y_1y'_2 - y_2y'_1) = 0.
\]

By noting that

\[
\frac{d}{dt}[W(y_1, y_2)(t)] = \frac{d}{dt}[y_1y'_2 - y_2y'_1] = y_1y''_2 + y'_1y'_2 - y'_2y'_1 - y_2y''_1 = y''_2y_1 - y''_1y_2,
\]

we obtain

\[
\frac{d}{dt}[W(y_1, y_2)(t)] + p(t)W(y_1, y_2)(t) = 0.
\]

This is a first-order separable linear equation, which has the solution

\[
W(y_1, y_2)(t) = c \exp \left[- \int p(t) \, dt \right],
\]

where \(c \) is an arbitrary constant. This is summarized in the following theorem.

Theorem (Abel’s Theorem) Let \(p(t) \) and \(q(t) \) be continuous on an open interval \(I \), and let \(y_1 \) and \(y_2 \) be solutions of the ODE

\[L[y] = y'' + p(t)y' + q(t)y = 0. \]

Then the Wronskian \(W(y_1, y_2)(t) \) is given by

\[
W(y_1, y_2)(t) = c \exp \left[- \int p(t) \, dt \right],
\]

where \(c \) is a constant that depends on \(y_1 \) and \(y_2 \). Furthermore, \(W(y_1, y_2)(t) \) is either never zero in \(I \) (if \(c \) is nonzero) or is zero for all \(t \in I \) (if \(c = 0 \)).

It is interesting to note that except for a constant factor, the Wronskian of two solutions of \(L[y] = 0 \) can be computed even if the solutions \(y_1 \) and \(y_2 \) themselves are unknown.