A Spectral Time-Domain Method for
Computational Electrodynamics

James V. Lambers

Abstract Block Krylov subspace spectral (KSS) methods have preljdaeen ap-
plied to the variable-coefficient heat equation and waveaggn, and have demon-
strated high-order accuracy, as well as stability charestie of implicit time-
stepping schemes, even though KSS methods are explicit.rke&Bods for scalar
equations compute each Fourier coefficient of the solutgingitechniques devel-
oped by Gene Golub and Gérard Meurant for approximatingefts of functions
of matrices by Gaussian quadrature in the spectral, ratherghysical, domain. We
show how they can be generalized to non-self-adjoint syst#rooupled equations,
such as Maxwell’s equations.

1 Introduction

We consider Maxwell’s equation on the cul@e2r13, with periodic boundary con-
ditions. Assuming nonconductive material with no losses have

divE=0, divAH =0, 1)

. oA ~ 0E
curIE_—uE, curIH_sﬁ, (2)
whereE, H are the vectors of the electric and magnetic fields, and are the
electric permittivity and magnetic permeability, respesly. . A
By taking the curl of both sides of (2), we decouple the vefieddsE andH and
obtain the equations
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In his 1966 paper [17], Yee proposed the original finiteatéince time-domain
method for solving the equations (1), (2). This method usstaggered grid to
avoid solving simultaneous equations bandH, and also removes numerical dis-
sipation. However, because it is an explicit finite-diffece scheme, its time step is
constrained by the CFL condition. In this paper, we intradamew time-domain
method for these equations.

In [14] a class of methods, called Krylov subspace spedtt@g) methods, was
introduced for the purpose of solving parabolic variabdefticient PDE. These
methods are based on techniques developed by Golub and Meéuwrd] for ap-
proximating elements of a function of a matrix by Gaussiaadyature in thepec-
tral domain. In [8, 10], these methods were generalized to thenskorder wave
equation, for which these methods have exhibited even higtter accuracy.

It has been shown in these references that KSS methods, dgyengpdifferent
approximations of the solution operator for each Fouriefficient of the solution,
achieve higher-order accuracy in time than other Krylovspatte methods (see,
for example, [9]) for stiff systems of ODE, and, as shown i@][1hey are also
quite stable, considering that they are explicit methodd1l, 12], the accuracy
and robustness of KSS methods were enhanced using blocki@aggiadrature.

Our goal is to extend the high-order accuracy achieved ®stlalar wave equa-
tion to systems of coupled wave equations such as thoseilegdryy Maxwell’s
equations. Section 2 reviews the main properties of KSS oaksthincluding block
KSS methods, as applied to the parabolic problems for wihiiek tvere originally
designed. Section 3 reviews their application to the wawaggn, including previ-
ous convergence analysis. In Section 4, we discuss the matibins that must be
made to block KSS methods in order to apply them to Maxwedjisagions. Numer-
ical results are presented in Section 5, and conclusiorstated in Section 6.

= AE + pteurlE x Op, (3)

= AH + & curlA x Ce. (4)

2 Krylov Subspace Spectral M ethods

We first review KSS methods, which are easier to describedoahmwlic problems.
Let S(t) = expg—Lt] represent the exact solution operator of the problem

w+Lu=0, t>0, (5)

with appropriate initial conditions and periodic boundaonditions. The operator
L is a second-order, self-adjoint, positive definite diffeial operator.

Let(-,-) denote the standard inner product of functions defind@®@m1. Krylov
subspace spectral methods, introduced in [14], use Gaugsadrature on the spec-
tral domain to compute the Fourier coefficients of the solutiThese methods are
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time-stepping algorithms that compute the solution at tinte, . . ., wheret, = nAt
for some choice ofit. Given the computed solutiar(X;t,) at timet,, the solution
at timet, 1 is computed by approximating the Fourier coefficients thatily be
obtained by applying the exact solution operatou@aty),

(W, the1) = <\/%Tein,S(At)G(x,tn)>. (6)

In [4] Golub and Meurant describe a method for computing ¢jtias of the form
uf(A), 7)

whereu andv areN-vectors Ais anN x N symmetric positive definite matrix, and
f is a smooth function. Our goal is to apply this method with- Ly wherely is
a spectral discretization &f f(A) = exp(—At) for somet, and the vectora andv
are obtained frong, andu", whereg,, is a discretization o\/f%Te"*’X andu” is the
approximate solution at timtg, evaluated on aN-point uniform grid.

The basic idea is as follows: since the matiis symmetric positive definite, it
has real eigenvalues

b=A1>A>--->Av=2a>0, (8)

and corresponding orthogonal eigenvectprsj = 1,...,N. Therefore, the quantity
(7) can be rewritten as

N
u' f(Av = > f(AjuTajqfv. (9)
=1

which can also be viewed as a Riemann-Stieltjes integral
b
qu(A)v:I[f]:/ F(A)da(A). (10)
a

As discussed in [4], the integrHlf | can be approximated using Gaussian quadra-
ture rules, which yields an approximation of the form

K
I[f] =Y w;f(Aj) +RIf], (11)
=1

where the nodedj, j = 1,...,K, as well as the weightsj, j = 1,...,K, can be
obtained using the symmetric Lanczos algorithnu = v, and the unsymmetric
Lanczos algorithm iti # v (see [7]).

In the caseu # v, there is a possibility that the weights may not be positive,
which destabilizes the quadrature rule (see [1] for detditstead, we consider

[uv}Tf(A)[uv}, (12)

which results in the Z 2 matrix
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wherep(A) is a 2x 2 matrix function ofA, each entry of which is a measure of the
forma(A) from (10).

In [4] Golub and Meurant showed how a block method can be use@nerate
quadrature formulas. We will describe this process herednendetail. The inte-
gral fa (A)du(A) is now a 2x 2 symmetric matrix and the most genekahode
quadrature formulais of the form

K
/ f(A)du(A :Z f(T;)W, +error, (14)

with Tj andW; being symmetric % 2 matrices. By diagonalizing eadl, we obtain
the simpler formula

b
/ f(A)du(A Zf v,v + error, (15)
a

where, for each), Aj is a scalar andj is a 2-vector.
Each node\; is an eigenvalue of the matrix

M1 B]
Bi My BJ
Ik = ; (16)
Bk_2 Mk-1 Bf_;
Bk-1 Mk

which is a block-triangular matrix of ordeK2 The vectow; consists of the first two
elements of the corresponding normalized eigenvectoroiigpuite the matriceldl;
andBj, we use the block Lanczos algorithm, which was proposed hbyl&sand
Underwood in [6].

We are now ready to describe block KSS methods. For each wanberw =
—N/2+1,...,N/2, we define

Ro(w) = [& u"]

and compute th@R factorizationRy(w) = X (w)Bo(w). We then carry out block
Lanczos iteration, applied to the discretized operatgrto obtain a block tridi-
agonal matrixZk (w) of the form (16), where each entry is a functioncof The
recursion coefficents i¥k (w) can be computed efficiently by applying basic rules
of symbolic calculus, including in higher spatial dimemso

Then, we can express each Fourier coefficient of the appeirisolution at the
next time step as
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[0" ], = [BY Efbexp— Tk (w)At]E12Bo] ,, (17)

whereE;, = [el ez} . The computation of (17) consists of computing the eigenval-
ues and eigenvectors 8k (w) in order to obtain the nodes and weights for Gaussian
quadrature, as described earlier.

This algorithm has local temporal accura@yAt?<—1) [11]. Furthermore, block
KSS methods are more accurate than the original KSS metrextsided in [10,
14], even though they have the same order of accuracy, bedhassolutionu”
plays a greater role in the determination of the quadratodes. They are also
more effective for problems with oscillatory or discontius coefficients [11].

3 Application to the Wave Equation

In this section, we review the application of Krylov subspapectral methods to
the wave equation
Ut +Lu=0 on(0,2m) x (0,), (18)

with appropriate initial conditions, and periodic boundaonditions. A spectral
representation of the operatorllows us to obtain a representation of the solution
operator (th@ropagato) in terms of the sine and cosine families generatet by

a simple functional calculus. Introduce

Ra(t) = L ¥2sin(tv/L) = zs'”“ﬁ (@1 )9n., (29)
Ro(t) = cos(tvL) = Zlcos(tmxm,-mm (20)

whereAq, Ay, ... are the (positive) eigenvalues bf and ¢4, ¢», ... are the corre-
sponding eigenfunctions. Then the propagator of (18) camrfiten as

_ | Ro(t) Ruft)
0= Sty )] D

The entries of this matrix, as functions lof indicate which functions are the inte-
grands in the Riemann-Stieltjes integrals used to comnad-ourier coefficients
of the solution.

In [12, Theorem 6], it is shown that when the leading coeffiti®X) is constant
and the coefficieng(x) is bandlimited, the 1-node KSS method, which has second-
order local accuracy in time, is also unconditionally stalbh general, as shown in
[12], the local temporal error iI©(At*~2) whenK block Gaussian nodes are used
for each Fourier coefficient.
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4 Application to Maxwell’s Equations

In this section, we consider generalizations that must l#ertmblock KSS methods
for the wave equation in order to apply them to a non-seléiatlsystem of coupled
equations such as (3).
First, we consider the following initial-boundary valueptem in one space di-
mension,
02
ot
with appropriate initial conditions, and periodic boundaonditions, whereu :
[0,271] x [0,00) — R" for n > 1, andL(x,D) is ann x n matrix where théi, j) entry
is an a differential operatdr;j (x,D) of the form

2+Lu—0, t >0, (22)

Lij (x,D)u z x)DHu, D= %(, (23)

with spatially varying coefficienta'd, u=0,1,...,mj.

Generalization of KSS methods to a system of the form (22)graceed as
follows. Fori,j =1,...,n, letL;; (D) be the constant-coefficient operator obtained
by averaging the coefficients &fj (x,D) over[0,2m]. Then, for each wave number
w, we defineL(w) be the matrix with entrie&ij (w), i.e., the symbols of;; (D)
evaluated atv. Next, we compute the spectral decompositioh @b) for eachcw.
Forj=1,...,n letqgj(w) be the Schur vectors d&f(w). Then, we define our test
and trial functions byp; «(x) = q; (w) ® €%,

For Maxwell’s equations, the matri¥y that discretizes the operator

. 1, . 1A
AE = e (AE+ p~curlE x Ou)
is not symmetric, and for each coefficient of the solutior, tesulting quadrature
nodesA;j, j =1,...,2K, from (15) are now complex and must be obtained by a
straightforward modification of block Lanczos iteratiom tmsymmetric matrices.

5 Numerical Results

We now apply a 2-node block KSS method to the equation (3} imitial condi-
tions

32
a0 (x,¥,2,0) = G(x,Y,2), (24)

with periodic boundary conditions. The coefficiept&inde are given by

E(x,Y,20) =F(x,.2),

(x,y,2) = 0.4077+0.0039 cog+ 0.0043 coy — 0.0012siry +
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0.0018cos$y+ z) + 0.0027 cosy — z) + 0.003 cox +

0.0013 co$x — z) +0.0012sirfx — z) + 0.0017 cosx+y) +

0.0014 co$x—vy), (25)
£(x,y,z) = 0.4065+ 0.0025cog+ 0.0042 coy+ 0.001 cogy + z) +

0.0017 cox+ 0.0011cosx— z) 4+ 0.0018 cosx+VY) +

0.002co$x—Vy). (26)

The components df andG are generated in a similar fashion, except thatxhe
andz-components are zero.

Figure 1 demonstrates the convergence behavior using estionates for solu-
tions computed using = 2 block quadrature nodes per coefficient in the basis de-
scribed in Section 4. Since the exact solution is not avks|ahe error estimate for
each solution is obtained by taking thgnorm of the relative difference between
the y-component of the solution, and that of a solution computgdgia smaller
time stepAt = 1/64 and the maximum number of grid points.

At both spatial resolutions, the scheme exhibits approteiyeth-order accu-
racy in time asAt decreases, except that fdr= 16, the spatial error arising from
truncation of Fourier series is significant enough that therall error fails to de-
crease below the level achievedft= 1/8. ForN = 32, the solution is sufficiently
resolved in space, and the order of overgencétas O is approximately 6.1.

We also note that increasing the resolution does not posdi#figulty from a
stability point of view. Unlike explicit finite-differencechemes that are constrained
by a CFL condition, KSS methods do not require a reductiorhétime step to
offset areduction in the spatial step in order to maintaumutedness of the solution,
because their domain of dependence includes the entirialspatain for anyAt.

Maxwell's equations, 3-D

N=16

- - - N=32

relative error

. . . .
1 12 1/4 1/8 1/16 1/32
time step

Fig. 1 Estimates of relative error in solutions of (3), (24) congaliusing a 2-node block KSS
method on amN-point grid, with time stept, for various values olN andAt.
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6 Conclusions

We have demonstrated that KSS methods can be applied to Maxaguations
with smoothly varying coefficients. The order of temporat@aacy is the same
as for the wave equation, even though Fourier coefficiemtsiaw represented by
bilinear forms involving non-self-adjoint matrices, whiare treated as Riemann-
Stieltjes integrals over contours in the complex planeufawork will extend the
approach described in this paper to more realistic appdicatby using symbol
modification to efficiently implement perfectly matchedéay (see [2]), and various
techniques (see [3, 16]) to effectively handle discontimicoefficients.
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