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Abstract Block Krylov subspace spectral (KSS) methods have previously been ap-
plied to the variable-coefficient heat equation and wave equation, and have demon-
strated high-order accuracy, as well as stability characteristic of implicit time-
stepping schemes, even though KSS methods are explicit. KSSmethods for scalar
equations compute each Fourier coefficient of the solution using techniques devel-
oped by Gene Golub and Gérard Meurant for approximating elements of functions
of matrices by Gaussian quadrature in the spectral, rather than physical, domain. We
show how they can be generalized to non-self-adjoint systems of coupled equations,
such as Maxwell’s equations.

1 Introduction

We consider Maxwell’s equation on the cube[0,2π ]3, with periodic boundary con-
ditions. Assuming nonconductive material with no losses, we have

div Ê = 0, divĤ = 0, (1)

curlÊ =−µ
∂ Ĥ
∂ t

, curlĤ = ε
∂ Ê
∂ t

, (2)

whereÊ, Ĥ are the vectors of the electric and magnetic fields, andε, µ are the
electric permittivity and magnetic permeability, respectively.

By taking the curl of both sides of (2), we decouple the vectorfieldsÊ andĤ and
obtain the equations
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µε
∂ 2Ê
∂ t2 = ∆ Ê+ µ−1curlÊ×∇µ , (3)

µε
∂ 2Ĥ
∂ t2 = ∆Ĥ+ ε−1curlĤ×∇ε. (4)

In his 1966 paper [17], Yee proposed the original finite-difference time-domain
method for solving the equations (1), (2). This method uses astaggered grid to
avoid solving simultaneous equations forÊ andĤ, and also removes numerical dis-
sipation. However, because it is an explicit finite-difference scheme, its time step is
constrained by the CFL condition. In this paper, we introduce a new time-domain
method for these equations.

In [14] a class of methods, called Krylov subspace spectral (KSS) methods, was
introduced for the purpose of solving parabolic variable-coefficient PDE. These
methods are based on techniques developed by Golub and Meurant in [4] for ap-
proximating elements of a function of a matrix by Gaussian quadrature in thespec-
tral domain. In [8, 10], these methods were generalized to the second-order wave
equation, for which these methods have exhibited even higher-order accuracy.

It has been shown in these references that KSS methods, by employing different
approximations of the solution operator for each Fourier coefficient of the solution,
achieve higher-order accuracy in time than other Krylov subspace methods (see,
for example, [9]) for stiff systems of ODE, and, as shown in [10], they are also
quite stable, considering that they are explicit methods. In [11, 12], the accuracy
and robustness of KSS methods were enhanced using block Gaussian quadrature.

Our goal is to extend the high-order accuracy achieved for the scalar wave equa-
tion to systems of coupled wave equations such as those described by Maxwell’s
equations. Section 2 reviews the main properties of KSS methods, including block
KSS methods, as applied to the parabolic problems for which they were originally
designed. Section 3 reviews their application to the wave equation, including previ-
ous convergence analysis. In Section 4, we discuss the modifications that must be
made to block KSS methods in order to apply them to Maxwell’s equations. Numer-
ical results are presented in Section 5, and conclusions arestated in Section 6.

2 Krylov Subspace Spectral Methods

We first review KSS methods, which are easier to describe for parabolic problems.
Let S(t) = exp[−Lt] represent the exact solution operator of the problem

ut +Lu= 0, t > 0, (5)

with appropriate initial conditions and periodic boundaryconditions. The operator
L is a second-order, self-adjoint, positive definite differential operator.

Let ⟨⋅, ⋅⟩ denote the standard inner product of functions defined on[0,2π ]. Krylov
subspace spectral methods, introduced in [14], use Gaussian quadrature on the spec-
tral domain to compute the Fourier coefficients of the solution. These methods are
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time-stepping algorithms that compute the solution at timet1, t2, . . ., wheretn = n∆ t
for some choice of∆ t. Given the computed solution ˜u(x, tn) at timetn, the solution
at time tn+1 is computed by approximating the Fourier coefficients that would be
obtained by applying the exact solution operator to ˜u(x, tn),

û(ω , tn+1) =

〈

1√
2π

eiωx,S(∆ t)ũ(x, tn)

〉

. (6)

In [4] Golub and Meurant describe a method for computing quantities of the form

uT f (A)v, (7)

whereu andv areN-vectors,A is anN×N symmetric positive definite matrix, and
f is a smooth function. Our goal is to apply this method withA= LN whereLN is
a spectral discretization ofL, f (λ ) = exp(−λ t) for somet, and the vectorsu andv
are obtained from̂eω andun, whereêω is a discretization of 1√

2π eiωx andun is the
approximate solution at timetn, evaluated on anN-point uniform grid.

The basic idea is as follows: since the matrixA is symmetric positive definite, it
has real eigenvalues

b= λ1 ≥ λ2 ≥ ⋅⋅ ⋅ ≥ λN = a> 0, (8)

and corresponding orthogonal eigenvectorsq j , j = 1, . . . ,N. Therefore, the quantity
(7) can be rewritten as

uT f (A)v =
N

∑
j=1

f (λ j )uTq jqT
j v. (9)

which can also be viewed as a Riemann-Stieltjes integral

uT f (A)v = I [ f ] =
∫ b

a
f (λ )dα(λ ). (10)

As discussed in [4], the integralI [ f ] can be approximated using Gaussian quadra-
ture rules, which yields an approximation of the form

I [ f ] =
K

∑
j=1

wj f (λ j)+R[ f ], (11)

where the nodesλ j , j = 1, . . . ,K, as well as the weightswj , j = 1, . . . ,K, can be
obtained using the symmetric Lanczos algorithm ifu = v, and the unsymmetric
Lanczos algorithm ifu ∕= v (see [7]).

In the caseu ∕= v, there is a possibility that the weights may not be positive,
which destabilizes the quadrature rule (see [1] for details). Instead, we consider

[

u v
]T

f (A)
[

u v
]

, (12)

which results in the 2×2 matrix
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∫ b

a
f (λ )dµ(λ ) =

[

uT f (A)u uT f (A)v
vT f (A)u vT f (A)v

]

, (13)

whereµ(λ ) is a 2×2 matrix function ofλ , each entry of which is a measure of the
form α(λ ) from (10).

In [4] Golub and Meurant showed how a block method can be used to generate
quadrature formulas. We will describe this process here in more detail. The inte-
gral

∫ b
a f (λ )dµ(λ ) is now a 2×2 symmetric matrix and the most generalK-node

quadrature formula is of the form

∫ b

a
f (λ )dµ(λ ) =

K

∑
j=1

Wj f (Tj )Wj +error, (14)

with Tj andWj being symmetric 2×2 matrices. By diagonalizing eachTj , we obtain
the simpler formula

∫ b

a
f (λ )dµ(λ ) =

2K

∑
j=1

f (λ j)v jvT
j +error, (15)

where, for eachj, λ j is a scalar andv j is a 2-vector.
Each nodeλ j is an eigenvalue of the matrix

TK =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M1 BT
1

B1 M2 BT
2

. . .
. . .

. . .
BK−2 MK−1 BT

K−1
BK−1 MK

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (16)

which is a block-triangular matrix of order 2K. The vectorv j consists of the first two
elements of the corresponding normalized eigenvector. To compute the matricesM j

andB j , we use the block Lanczos algorithm, which was proposed by Golub and
Underwood in [6].

We are now ready to describe block KSS methods. For each wave numberω =
−N/2+1, . . . ,N/2, we define

R0(ω) =
[

êω un
]

and compute theQR factorizationR0(ω) = X1(ω)B0(ω). We then carry out block
Lanczos iteration, applied to the discretized operatorLN, to obtain a block tridi-
agonal matrixTK(ω) of the form (16), where each entry is a function ofω . The
recursion coefficents inTK(ω) can be computed efficiently by applying basic rules
of symbolic calculus, including in higher spatial dimensions.

Then, we can express each Fourier coefficient of the approximate solution at the
next time step as
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[ûn+1]ω =
[

BH
0 EH

12exp[−TK(ω)∆ t]E12B0
]

12 (17)

whereE12 =
[

e1 e2
]

. The computation of (17) consists of computing the eigenval-
ues and eigenvectors ofTK(ω) in order to obtain the nodes and weights for Gaussian
quadrature, as described earlier.

This algorithm has local temporal accuracyO(∆ t2K−1) [11]. Furthermore, block
KSS methods are more accurate than the original KSS methods described in [10,
14], even though they have the same order of accuracy, because the solutionun

plays a greater role in the determination of the quadrature nodes. They are also
more effective for problems with oscillatory or discontinuous coefficients [11].

3 Application to the Wave Equation

In this section, we review the application of Krylov subspace spectral methods to
the wave equation

utt +Lu= 0 on(0,2π)× (0,∞), (18)

with appropriate initial conditions, and periodic boundary conditions. A spectral
representation of the operatorL allows us to obtain a representation of the solution
operator (thepropagator) in terms of the sine and cosine families generated byL by
a simple functional calculus. Introduce

R1(t) = L−1/2sin(t
√

L) =
∞

∑
n=1

sin(t
√

λn)√
λn

⟨ϕ∗
n , ⋅⟩ϕn , (19)

R0(t) = cos(t
√

L) =
∞

∑
n=1

cos(t
√

λn)⟨ϕ∗
n , ⋅⟩ϕn , (20)

whereλ1,λ2, . . . are the (positive) eigenvalues ofL, andϕ1,ϕ2, . . . are the corre-
sponding eigenfunctions. Then the propagator of (18) can bewritten as

P(t) =

[

R0(t) R1(t)
−LR1(t) R0(t)

]

. (21)

The entries of this matrix, as functions ofL, indicate which functions are the inte-
grands in the Riemann-Stieltjes integrals used to compute the Fourier coefficients
of the solution.

In [12, Theorem 6], it is shown that when the leading coefficient p(x) is constant
and the coefficientq(x) is bandlimited, the 1-node KSS method, which has second-
order local accuracy in time, is also unconditionally stable. In general, as shown in
[12], the local temporal error isO(∆ t4K−2) whenK block Gaussian nodes are used
for each Fourier coefficient.



6 James V. Lambers

4 Application to Maxwell’s Equations

In this section, we consider generalizations that must be made to block KSS methods
for the wave equation in order to apply them to a non-self-adjoint system of coupled
equations such as (3).

First, we consider the following initial-boundary value problem in one space di-
mension,

∂ 2u
∂ t2 +Lu = 0, t > 0, (22)

with appropriate initial conditions, and periodic boundary conditions, whereu :
[0,2π ]× [0,∞)→ℝ

n for n> 1, andL(x,D) is ann×n matrix where the(i, j) entry
is an a differential operatorLi j (x,D) of the form

Li j (x,D)u(x) =
mi j

∑
µ=0

ai j
µ (x)D

µ u, D =
d
dx

, (23)

with spatially varying coefficientsai j
µ , µ = 0,1, . . . ,mi j .

Generalization of KSS methods to a system of the form (22) canproceed as
follows. For i, j = 1, . . . ,n, let Li j (D) be the constant-coefficient operator obtained
by averaging the coefficients ofLi j (x,D) over [0,2π ]. Then, for each wave number
ω , we defineL(ω) be the matrix with entriesLi j (ω), i.e., the symbols ofLi j (D)
evaluated atω . Next, we compute the spectral decomposition ofL(ω) for eachω .
For j = 1, . . . ,n, let q j(ω) be the Schur vectors ofL(ω). Then, we define our test
and trial functions byφ j ,ω (x) = q j (ω)⊗eiωx.

For Maxwell’s equations, the matrixAN that discretizes the operator

AÊ =
1

µε
(

∆ Ê+ µ−1curlÊ×∇µ
)

is not symmetric, and for each coefficient of the solution, the resulting quadrature
nodesλ j , j = 1, . . . ,2K, from (15) are now complex and must be obtained by a
straightforward modification of block Lanczos iteration for unsymmetric matrices.

5 Numerical Results

We now apply a 2-node block KSS method to the equation (3), with initial condi-
tions

Ê(x,y,z,0) = F(x,y,z),
∂ Ê
∂ t

(x,y,z,0) = G(x,y,z), (24)

with periodic boundary conditions. The coefficientsµ andε are given by

µ(x,y,z) = 0.4077+0.0039cosz+0.0043cosy−0.0012siny+
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0.0018cos(y+ z)+0.0027cos(y− z)+0.003cosx+

0.0013cos(x− z)+0.0012sin(x− z)+0.0017cos(x+ y)+

0.0014cos(x− y), (25)

ε(x,y,z) = 0.4065+0.0025cosz+0.0042cosy+0.001cos(y+ z)+

0.0017cosx+0.0011cos(x− z)+0.0018cos(x+ y)+

0.002cos(x− y). (26)

The components ofF andG are generated in a similar fashion, except that thex-
andz-components are zero.

Figure 1 demonstrates the convergence behavior using errorestimates for solu-
tions computed usingK = 2 block quadrature nodes per coefficient in the basis de-
scribed in Section 4. Since the exact solution is not available, the error estimate for
each solution is obtained by taking theℓ2-norm of the relative difference between
the y-component of the solution, and that of a solution computed using a smaller
time step∆ t = 1/64 and the maximum number of grid points.

At both spatial resolutions, the scheme exhibits approximately 6th-order accu-
racy in time as∆ t decreases, except that forN = 16, the spatial error arising from
truncation of Fourier series is significant enough that the overall error fails to de-
crease below the level achieved at∆ t = 1/8. ForN = 32, the solution is sufficiently
resolved in space, and the order of overgence as∆ t → 0 is approximately 6.1.

We also note that increasing the resolution does not pose anydifficulty from a
stability point of view. Unlike explicit finite-differenceschemes that are constrained
by a CFL condition, KSS methods do not require a reduction in the time step to
offset a reduction in the spatial step in order to maintain boundedness of the solution,
because their domain of dependence includes the entire spatial domain for any∆ t.
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Fig. 1 Estimates of relative error in solutions of (3), (24) computed using a 2-node block KSS
method on anN-point grid, with time step∆t, for various values ofN and∆t.
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6 Conclusions

We have demonstrated that KSS methods can be applied to Maxwell’s equations
with smoothly varying coefficients. The order of temporal accuracy is the same
as for the wave equation, even though Fourier coefficients are now represented by
bilinear forms involving non-self-adjoint matrices, which are treated as Riemann-
Stieltjes integrals over contours in the complex plane. Future work will extend the
approach described in this paper to more realistic applications by using symbol
modification to efficiently implement perfectly matched layers (see [2]), and various
techniques (see [3, 16]) to effectively handle discontinuous coefficients.
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