KRYLOV SUBSPACE METHODS FOR
VARIABLE-COEFFICIENT INITIAL-BOUNDARY VALUE
PROBLEMS

a dissertation
submitted to the program in scientific computing and computa tional
mathematics
and the committee on graduate studies
of stanford university
in partial fulfillment of the requirements
for the degree of
doctor of philosophy

James Lambers
September 2003



¢ Copyright by James Lambers 2004
All Rights Reserved



| certify that | have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a
dissertation for the degree of Doctor of Philosophy.

Gene H. Golub
(Principal Adviser)

| certify that | have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a
dissertation for the degree of Doctor of Philosophy.

Margot G. Gerritsen

| certify that | have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a
dissertation for the degree of Doctor of Philosophy.

Joseph B. Keller

Approved for the University Committee on Graduate
Studies:




Abstract

The design and analysis of numerical methods for the solutiof partial di erential
equations of the form%‘t’(x;t) + L(x;D)u(x;t) = 0, where the di erential operator
L(x;D) has constant coe cients, is greatly simplied by the fact that, for many
methods, a closed-form representation of the computed stbn as a function of
x and t is readily available. This is due in large part to the fact tha for such
methods, the matrix that represents a discretization of (x; D) is diagonalizable, and
the eigenvalues and eigenfunctions of this matrix are knowrror variable-coe cient
problems, however, this simpli cation is not available.

This thesis presents an alternative approach to the solutioof this problem in
the variable-coe cient case that leads to a new numerical nibod, called a Krylov
subspace method, for which the computed solution can easibhe represented as a
function of x and t. The method makes use of Gaussian quadrature in the spectral
domain to compute Fourier components of the solution. For ea component, a dif-
ferent approximation of the solution operator by a restridbn to a low-dimensional
Krylov subspace is employed, and each approximation is optal in some sense for
computing the given component. The computed solution can benalytically di er-
entiated with respect to time, resulting in new approachesotdeferred correction and
the solution of PDE that are second-order in time such as theelegraph equation.

As the Krylov subspace method is more e ective for problemslivere the operator
L(x;D) has smooth coe cients, approaches to preconditioning derential opera-
tors using unitary similarity transformations are presentd. These preconditioning
techniques are based on the use of the uncertainty principby Fe erman to obtain
approximate diagonalizations of self-adjoint di erentid operators.



Acknowledgements

This dissertation is the conclusion of what has been an extrely long journey, one
that | could not have completed alone.

First of all, I would like to thank Margot Gerritsen, for standing with me every
step of the way.

My family, for leaving the light on for me until | could nally come home.

Dianna Foster, for love, friendship and support without whth no undertaking of
this magnitude could ever succeed. | love you.

From Purdue University: John Rice and Richard Penney, for géng me started
and giving me the opportunity to see how ful lling mathematcs can be. From Stan-
ford: Joe Oliger, my original advisor, for the opportunity b take on such a stimulating
challenge; Joseph Keller, Persi Diaconis, Eric Darve, andoibbn Levy, for challenging
my work at every turn and making me realize how strongly | bedived in what | was
doing; my friends, Maureen Doyle and Doug Enright, for shang the joy and pain as
| did with you; Oren Livne, for believing in me more than | beleved in myself. From
UC Irvine: Patrick Guidotti and Knut S Ina, for validating m y work and showing me
its full potential. From Sandia: Tammy Kolda, for helping memake a presentation
worth seeing.

My friends who have made life's journey worthwhile: From Stdbase, Joan Isen-
barger, Gylver Wagnon, Ava Fanelli and Scott Hunter, for neer letting me forget
what was most important; Laila Schlack, for the tree we plamd; John Salapski,
Gabrielle Martin, Tia Starr, and, of course, Ashley!

Finally, | wish to thank Gene Golub, for giving me the opportuity to come to
Stanford{twice.



This thesis is dedicated
to the memory of
Soren S. Jensen
(1956-1997)

Vi



Contents

Abstract \Y

Acknowledgements %

Vi

1 Introduction 1
1.1 Closed-Form Representations of Solutions. . . . . . ... .... ...

1.1.1 Spectral Methods . . . . .. ... ... ... .. ... ... 4

1.1.2 Finite Dierence Methods . . . . .. ... ........... 5

1.1.3 Variable-Coe cient Problems . . . . ... ... ........ 7
9
11

1.2 The Proposed Alternative . . . .. ... ... ... ... .......
1.2.1 Generalizing the Fourier Method . . ... ... ........
1.2.2 The Uncertainty Principle and Preconditioning . . . . .. .. 12
1.3 Outline. . . . .. . . 16
1.4 Notation . . . . . . . . . . e 16
Krylov Subspace Methods 18
2.1 Introduction . . . . . . .. 18
2.2 Moments and Quadrature . . . .. ... .. ... o 20
221 Thecasal =V . .. ... .. it 22
222 Thecasal 6V .. ... ... . .. ... 23
2.2.3 Gauss-Radau Quadrature Rules . . . . ... ... ....... 25
2.3 Formulation . . . . . .. 26



2.4 Convergence Analysis . . . . . . . . . ... e 29
2.4.1 Fourier Series and Trigonometric Interpolation . . . . . . .. 30
2.4.2 Application of Di erential Operators . . . . ... ... .. .. 31
2.4.3 The Modied Algorithms . . . . .. ... ... ......... 33
244 CoONnsSiSteNCY . . . . . . . . e 36
245 Stability . . . ... 43
246 CONVergencCe . . . . . . . . i e e 43
247 SumMmMary ... e e e 44

3 Preconditioning 50

3.1 The Uncertainty Principle . . . . . . ... ... ... ... ...... R

3.2 Egorov's Theorem . . . . .. .. .. . .. . .. .. ..., 56

3.3 SymbolicCalculus . . . ... .. .. ... .. ... 57
3.3.1 Basic Rules of Symbolic Calculus . . . . ... .. ....... 58
3.3.2 The Pseudo-Inverse of the Di erentiation Operator . .. . . . 59

3.4 Local Preconditioning . . .. ... .. ... ... ... ... ... 62

3.5 Global Preconditioning . . . . . . . ... ... ... 8
3.5.1 Non-Normal Operators . . . . . . ... ... ... ....... 72

3.6 Summary . .. .. e e e 72

4 Implementation 73

4.1 Symbolic Lanczos lteration. . . . . . . ... ... L 0L 73
411 ASimple Example . ... .. .. ... .. .. ... ..., 74

4.2 An Abstract Data Type for Lanczos Vectors . . . . ... ... ... 76
4.2.1 Data Structure . . . . . . ... 76
422 Operations. . . . . . . . . e e 77

4.3 Construction of Approximate Solutions . . . . . ... .. ... ... 82
4.3.1 Computation of Jacobi Matrices . . . . .. ... .. ... ... 83
4.3.2 Updating of Jacobi Matrices . . . .. .. .. .......... 84
4.3.3 Obtaining and Using Quadrature Rules . . . . .. .. ... .. ®

4.4 Preconditioning . . . . . . .. ... 91
4.4.1 Simple Canonical Transformations. . . . . .. .. ... .. .. 91

viii



4.4.2 Eliminating Variable Coecients . . .. ... ... ... ... 92

4.4.3 Using Multiple Transformations . . . . . .. .. ... ..... ]
4.5 Other Implementation Issues . . . . . . . . .. ... ... ....... 94
45.1 Parameter Selection. . . . .. ... ... ... ... .. ... 94
45.2 Reorthogonalization . . .. .. .. .. ............. 97
4.6 SUMMANY . . . . . e e e e e 97
Numerical Results 99
5.1 Constructionof TestCases . . . . . . . . . . .. .. ... D
5.2 Timestep Selection . . . . . . .. ... .. ... 104
5.3 Smoothness of Coecients . . . . . . .. .. .. ... .. ....... w
5.4 Component Analysis . . . .. .. ... ... .. .. 110
5.5 Selection of Quadrature Nodes . . . . . .. .. ... ... .. ..... 114
5.6 Preconditioning . . . . . . . . ... 114
5.7 Approximating Eigenfunctions . . . . . . ... ... .. .. 125
58 Performance . . .. . .. ... .. ... 125
5.9 Long-Term Evolution . . . . . ... ... ... ... ... .. .. ... 130
Conclusions 132
6.1 EXtensions . . . . . . . . .. .. 132
6.1.1 Problems in Higher Space Dimensions . . . .. .. ... ... A3
6.1.2 Non-Self-Adjoint Operators . . . . .. ... ... ....... 13
6.1.3 Higher-Order Operators . . . . .. ... ... ... ...... 137
6.1.4 Other Boundary Conditions . . . . .. ... .......... 140
6.1.5 Time-dependent Coecients . . . .. ... ... ........ 142
6.1.6 Quasilinear Problems . . . .. ... ... ... ......... 143
6.2 Representations of Solutions . . . .. ... ... ........... 144
6.2.1 A Deferred Correction Algorithm . . . . . . ... .. ... .. 18
6.2.2 Weak Solutions of Wave Equations . . . .. ... ....... 155
6.3 Future Directions . . . . . . . . . . ... .. 158
6.3.1 Eigenfunctions of Di erential Operators . . . . .. ... ... 158
6.3.2 Inverse Problems . . .. .. .. ... ... ... ... . ... 161



6.4 Summary

Bibliography



List of Tables

5.1

5.2

Performance data for Crank-Nicolson, Gauss and Gaussd&u meth-
ods applied to (5.11), (5.12), (5.13) withN = 256 gridpoints . . . . . 129
Performance data for Algorithm 2.2 with 3-point Gauss-Bdau rule
(v(x;1)), and method of eigenfunction expansionsu(x;t)), applied to
(1.1), (1.2), (1.4) with L(x;D) de ned to be the second-order self-
adjoint positive de nite operator L3(x; D) de ned in Section 5.1.N =
64 gridpoints areused inallcases. . . . . .. ... ... ........

Xi



List of Figures

1.1 Symbol of a constant-coe cient operatorL(x;D)= D? 1. ... .. 14

1.2 Symbol of a variable-coe cient operatoiL(x; D) = D((1+ %sinx)D)
L+ 3SINX . oo 15

3.1 Symbol of a constant-coe cient operatorA(x;D)= D2 1. ... .. 52

3.2 The volume of the set$S(A;K ), as de ned in (3.4), whereA(x;D) =
D2 landK = (A)forj =1;:::;32. The top gure plots the
volume of S(A; ;) as a function ofj, and the bottom gure plots the
change in volume between consecutive eigenvalues. . . . . .. ... 53

3.3 Symbol of a variable-coe cient operatorA(x; D) = D((1+ % sinx)D)
1+ 2SINX . oo 54

3.4 Volume of the setsS(A;K) where A(x;D) = D 1+ %sinx D

volume of S(A; ;) as a function ofj, and the bottom gure plots the
change in volume between consecutive eigenvalues. . . . . .. ... 55

3.5 Local preconditioning applied to operatot (x; D) with ¢ = 4 to ob-

tain new operatorL(y;D). . . . . . ... 65
3.6 Local preconditioning applied to operator_(y;D) from Figure 3.5,

with o =16. . . . . . . 66
5.1 Functions from the collectionf j (x), for selected values of andk. . 101

5.2 Functions from the collectiong; (x;y), for selected values of andk. 102

Xii



5.3

5.4

5.5

5.6

5.7

5.8

5.9

Estimates of relative error in the computed solutioru(x; t) of (5.11),
(5.12), (5.13) att = 1. Solutions are computed using nite di er-
ences with Crank-Nicolson (solid curve), Algorithm 2.2 wit Gaus-

sian quadrature (dashed curve), and Algorithm 2.2 with GalssRadau
guadrature (dotted-dashed curve) with various time stepsrad N = 64

grid points. . . . . .. e 105
Estimates of relative error in the approximate solutiomt(x; t) of (5.14),
(5.15), (5.16) att = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps diN = 64

grid points. . . . . .. e e 106
Estimates of relative error in the approximate solutiom(x; t) of (5.17),
(5.18), (5.19) att = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps diN = 64

grid points. . . . . .. e 108
Estimates of relative error in the approximate solutiom(x; t) of (5.20),
(5.21), (5.22) att = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps driN = 64

grid points. . . . . .. e 109
Estimates of relative error in the approximate solutiomt(x;t) to (5.23),
(5.24), (5.25) att = 1. Solutions are computed using nite di er-
ences with Crank-Nicolson (solid curve), the Fourier methb (dotted
curve), Gaussian quadrature (dashed curve) and Gauss-Radguadra-

ture (dotted-dashed curve) with various time steps andN = 64 grid
POINES. . . . . . e 111
Approximate solutions of (5.23), (5.24), (5.25) comped using the
xed-grid and variable-grid methods from Section 4.2. In bth cases,

N = 64 gridpoints are used to represent the approximate soluns,

and t=1=64. . . . . ... 112
Relative error estimates in rst and second derivativeef approximate
solutions to (5.11), (5.12), (5.13), measured using thé! and H?2 semi-
norms, respectively. In all casedl = 64 gridpoints are used. . . . .. 113

Xiii



5.10 Relative error estimates in approximate solutions of5(11), (5.12),
(5.13) computed using Gaussian quadrature witkK = 2;3;4 nodes.
In all casesN = 64 gridpoints are used, with time steps t =2 J for

5.11 Plot of relative error estimates versus execution timia computing ap-
proximate solutions of (5.11), (5.12), (5.13) using Gaussi quadrature
with K =2;3;4 nodes. In all case®l = 64 gridpoints are used, with
timesteps t=2 I forj =0;:::;6. . ... ... ........... 116
5.12 Symbol of original variable-coe cient operatorP (x; D) de ned in (5.10)117
5.13 Symbol of transformed operatoA(x;D) = U P(x; D)U whereP(x; D)
is de ned in (5.10) andU is chosen to make the leading coe cient of
A(x;D)constant. . . . ... .. ... 118
5.14 Symbol of transformed operatoB(x;D) = Q U L(x;D)UQ where
P(x;D) is de ned in (5.10) and the unitary similarity transformations
Q and U make B(x; D) a constant-coe cient operator modulo terms
of negative order. . . . . . . ... 119
5.15 Estimates of relative error in the approximate solutio t(x; t) of (5.27),
(5.28), (5.29) att = 1, computed using no preconditioning (solid
curve), a similarity transformation to make the leading coeient of
A(x;D) = U P(x;D)U constant (dashed curve), and a similarity trans-
formation to make B(x;D) = Q U P(x;D)UQ constant-coe cient
modulo terms of negative order. In all casell = 64 grid points are
used, with time steps t=2 1 forj =0;:::;6. . ... ........ 121
5.16 Relative error in frequency components with and withayreconditioning122
5.17 Estimates of relative error in the approximate solutio t{(x; t) of (5.30),
(5.31), (5.32) att = 1, computed using no preconditioning (solid
curve), a similarity transformation to make the leading coeient of
A(x;D) = U L(x;D)U constant (dashed curve), and a similarity trans-
formation to make B(x;D) = Q U L(x;D)UQ constant-coe cient
modulo terms of negative order. In all casell = 64 grid points are

Xiv



5.18 Size of solutions computed at = 1 using the Galerkin method with
forward Euler at various time steps, with and without precoditioning.
Top gure is for problem (5.27), (5.28), (5.29) while bottom gure is
for problem (5.30), (5.31), (5.32). . . .. .. ... ... .. o 124

5.19 Approximate eigenfunctions oP (x; D) from (5.10) generated by diag-
onalizing discretization matrix (vy(x)) and by preconditioning (vo(x)) 126

5.20 Relative error, measured using thie, norm, in approximate eigenfunc-
tions of P(x; D) from (5.10) generated by diagonalizing discretization
matrix and by preconditioning to make second-order and zetto-order
coecientsconstant. . . . . . . ... 127

5.21 Plot of execution time versus accuracy for nite-di eence and Gaus-
sian quadrature methods used to compute approximate solati of
problem (5.11), (5.12), (.13)att=1. ... .. ... ... ...... 128

6.1 Estimates of relative error in the approximate solutiorx(x;t) of (6.2),
(6.3), (6.4) att = 1 computed using nite di erencing with Crank-
Nicolson (solid curve), Algorithm 2.2 with Gaussian quadtare (dashed
curve), and Algorithm 2.2 with Gauss-Radau quadrature (ddsed-dotted

6.2 Estimates of relative error in the approximate solutioret(x; 1) of (6.7),
(6.8), (6.9) computed using Crank-Nicolson (solid curve)Algorithm
2.2 with Gaussian quadrature (dashed curve) and Algorithm.2 with
Gauss-Radau quadrature (dotted-dashed curve) wittN = 64 nodes
and various time steps. . . . . . . . ... 136

6.3 Fourier coe cients of the approximate solutionu{x; 5) of (6.10), (6.11),
(6.12) computed using the Fourier method (top graph) and Algrithm
2.4 with Gauss-Radau quadrature (bottom graph) withN = 64 nodes
andtimestep t=1=32.. ... .. .. . .. ... ... 138



6.4 Size of approximate solutions of (6.10), (6.11), (6.12pmputed using
Algorithm 2.4 with Gauss-Radau quadrature, with various cmbina-
tions of t and the number of Gaussian quadrature nodes, denoted by
K e 139
6.5 Estimates of relative error in the approximate solutiort(x; 1) of the
time-dependent beam equation (6.16), (6.17), (6.18) comima using
Crank-Nicolson with nite dierencing (solid curve), and Gaussian
guadrature (dotted-dashed curve) withN = 64 nodes and time steps

6.6 Estimates of relative error in the approximate solutiom(x; 1) of Burger's
equation (6.25), (6.26), (6.27) computed using Crank-Nitson with -
nite di erencing (solid curve), the Fourier method with ode23s(dashed
curve), and Gaussian quadrature (dotted-dashed curve) witN = 64
nodes and various time steps. . . . . . . ... Lo 145

6.7 Estimates of relative error in the approximate solutiorr(x; t) of prob-
lem (5.11), (5.12), (5.13) att = 1 computed with correction, using Al-
gorithm 6.1 (dashed curve), and without correction, using Byorithm
2.2 (solid curve). In all casedN = 64 grid points are used, with time
steps t=2 1, =056, . .. 151

6.8 Estimates of relative error in the approximate solutiom(x; t) of (5.14),
(5.15), (5.16) att = 1. Solutions are computed using Algorithm 6.1
with 2 Gaussian quadrature nodes, with various time steps diN = 64
grid points. . . . .. 152

6.9 Estimates of relative error in the approximate solutiomt(x;t) of (5.17),
(5.18), (5.19) att = 1. Solutions are computed using Algorithm 6.1
with 2 Gaussian quadrature nodes, with various time steps diN = 64
grid points. . . . .. 153

6.10 Estimates of relative error in the approximate solutio tH{x; t) of (5.20),
(5.21), (5.22) att = 1. Solutions are computed using Algorithm 6.1
with 2 Gaussian quadrature nodes, with various time steps driN = 64
grid points. . . . .. 154



6.11 Estimates of relative error in the computed solutiomi(x;t) to (6.40),
(6.41), (1.4) att = 1. Solutions are computed using the nite dier-
ence scheme (6.50) (solid curve), Algorithm 2.2 with Gaussi quadra-
ture (dashed curve) and Algorithm 2.2 with Gauss-Radau quadture
(dotted-dashed curve) with various time steps an®l = 64 grid points.
In both instances of Algorithm 2.2,K = 2 Gaussian quadrature nodes
areused. . . ... 159
6.12 Estimates of relative error in the computed solutiomi(x;t) to (6.51),
(6.52), (6.53) att = 1. Solutions are computed using the nite di er-
ence method (6.50) (solid curve), Algorithm 2.2 with Gausan quadra-
ture (dashed curve) and Algorithm 2.2 with Gauss-Radau quadture
(dotted-dashed curve) with various time steps an®l = 64 grid points.
In both instances of Algorithm 2.2,K =2 Gaussian quadrature nodes
areused. . . ... e 160

XVii



Xviii



Chapter 1
Introduction

In this thesis, we consider the initial-boundary value prolem with one spatial dimen-
sion whose solution is a real-valued function(x;t) : [a;] [to;infty ) ! R, wherex
denotes a point in the spatial domain, and denotes time. Without loss of generality,
we consider problems of the form

%ltzx;t)+ L(x;D)u(x;t)=0; 0<x< 2; t> O (1.1)

u(x;0)=f(x); 0<x< 2; (1.2)

whereL(x; D) is an m-th order di erential operator of the form

X d
L(x;D)u(x) = a(x)D u;, D= —; (1.3)
- dx
with coecients a, = 0;1;:::;m. For most of this thesis, we will also assume
periodic boundary conditions
ux;t)=u(x+2;t); 1 <x< 1; t>0 (1.4)

and that the operator L(x; D) is self-adjoint and positive de nite. In Chapter 6, we
will drop these assumptions, and also discuss problems withore than one spatial
dimension.



2 CHAPTER 1. INTRODUCTION

Example Consider a neuron represented by a ber of length and radius a(x) at
each pointx in the interval [0; "]. If u(x;t) is the di erence from rest of the membrane
potential at the point x and time t, then it satis es the cable equation

%;L L(x;D)u=0; 0<x<’; t> 0 (1.5)

whereL(x; D) is a second-order operator of the form (1.3) with

_ . ax)? ,
200 0P T (a0 (16
ay(x) = o 2¥a(x) : (1.7)
a(x) 1+ (a%x))2Cm(x)Ra(x)
and G (%)
_ 6GmX),
ao(X) = Cn(X)’ (1.8)

where R, is the axial resistance,G,, is the membrane capacitance, an€,, is the
membrane conductance. For details see [&.

1.1 Closed-Form Representations of Solutions

If the initial data f (x) is 2 -periodic, and if the coe cients of L(x;D), i.e., the
functionsa, = 0;1;:::;m, do not depend onx, one can easily write down an
expression for the solution to this problem,
" #
1 R xn
u(x;t) = P= exp i'x t a() Q) (1.9)

=1 =0

where the coe cients f'(! ), de ned by

1 ~o
(1) = = e X £ (x) dx (1.10)
0



1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 3

for all integers! , represent the nite Fourier transform off (x). Alternatively, we can
write
u(x;t) = S(x; D;Of (x); (1.11)

whereS(x; D ;t) is the solution operatorfor the problem (1.1), (1.2), (1.4). If we keep
in mind the fact that
L(;D)& (x)= & (X); (1.12)

where
xn

= a(l): am= 912:6“ (1.13)

=0
are the eigenvalues and eigenfunctions, respectively, lofx; D), then the solution
operator can easily be de ned using an eigenfunction expaos, i.e.,
b3
S(x;D;0)f (x) =exp[ L(x;D)t]f (x) = exp[ 1 t]é (x)he ;fi; (1.14)

=1

where the continuous inner produch; i is de ned by

Z 2
H:gi = f (x)g(x) dx: (1.15)
0

The eigenfunctions given in (1.13) are normalized so thatif each integer! ,

ke k®’=ha:8i=1: (1.16)

Obviously, the exact solution cannot be used in practice, Ibian approximate
solution can be obtained using a number of well-known methedincluding nite-
di erence methods or spectral methods. The latter are espiadly well-suited to the
constant-coe cient problem with periodic boundary conditions.

Unfortunately, in the variable-coe cient case, these metlods may begin to lose
some of their e ectiveness. We will illustrate the applicabn of such methods to both
classes of problems in order to highlight the particular diculties caused by variable
coe cients.



4 CHAPTER 1. INTRODUCTION

1.1.1 Spectral Methods

First, we review how spectral methods can be used to e cientl obtain an accurate
approximate solution in the constant-coe cient case. We wite the approximate
solution t(x;t) in the form

Nx? 1
t(X; t) = a(l;t)e (x); (1.17)

= N=2+1

and substitute this representation into (1.1) to obtain

xat)

at e (x)+uht)L(x;D)&(x)=0; O0<x< 2; t> 0 (1.18)

= N=2+1

Using the orthogonality of the eigenfunctiong’\x) with respect to the inner product
hyi, we obtain the decoupled system of ODEs

@(l;t)
ot

Similarly, substituting the representation (1.17) into (12) provides the initial condi-

a(l;t)=0; O0<x< 2; t> 0; jlj<N=2 (1.19)

tion for each of these ODESs,
o('; 0)=ha ;fi; jlj<N=2 (1.20)

This approach of representing the solution as a truncated Eoer series and solving
the resulting system of ODEs is known as th&ourier method

If the data f (x) is represented on anN-point uniform grid, with grid spacing
h =2 =N, then our approximate solution is

Nx? 1
t(X;t) = exp[ 1 t]& (x)h& ();F ()in; (1.21)

= N=2+1



1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 5

where the discrete inner produch; iy is de ned by

hu();v()in = g hojvi; = u(x); v =v(x); X = jh (1.22)
j=0

The approximate solutionufx;t) obtained by (1.21) is identically equal tou(x;t) if
f(1 )=0for ! outside the intervalj! j < N=2. For generalf (x), it is easy to see from
(1.21) that the error in the approximate solution arises frm the error in interpolating
f (x) at the N grid points and from truncating the Fourier series of the sakion.

Another way of looking at this process is to identify a funcon of x with an N -
vector whose elements are the function's values at the gridpts, in which case the
computed solution can be written as

H(t) = S()f = T e 'Tf; (1.23)

where T is the discrete Fourier transform operator, and the matrix is a diagonal
matrix with diagonal elements equal to , for j! j < N=2. The matrix S(t) is a
discretization of the solution operatorS(x; D ;t).

As discussed in [27], the matrix-vector multiplications imolving T and T ! can be
carried out using the Fast Fourier Transform, making the Fotder method an e cient
and accurate algorithm for computing an approximate solutin to (1.1), (1.2), (1.4)
when L(x; D) has constant coe cients.

1.1.2 Finite Di erence Methods

We will illustrate the use of nite di erence methods with a peci c example. Suppose
that L(x;D) is a second-order constant-coe cient operatol. (D) with a; = a; 0.
Then the problem (1.1), (1.2), (1.4) is simply the heat equadn.

We de ne a uniform grid on the interval [0 2 ) using N gridpoints located at
Xj = jh,j =0;L:::;N 1, whereh = 2 =N . If we represent a gridfunction
u(x) as a vectoru with N components representing the values of at the gridpoints
fx;g,j =0;:::;N 1, then we can approximate the action ok (x;D) = a,D? on a



6 CHAPTER 1. INTRODUCTION

gridfunction u(x) using the 2nd-order-accurate three-point stencil

aZU(Xj+1) 2u(x;) + u(x; 1) + O(h?): (1.24)

L(D)u(x;) = aD?u(x;) h2

Then, we can use the 2nd-order-accurate Crank-Nicolson rhetd as our time-stepping
method to obtain u(t + t) from u(t) by solving the system of linear equations

|+7tA ut+ 1= | ?tA u(t) (1.25)

at each time step of length t, whereA is the matrix

2 3
2 1 0 0 1
1 2 1 0 0
1 2 1 0
a ) . ) ) . )
A= e Co el el el : (1.26)
0 1 2 1
0 0 1 2 1
1 0 0 1 2

Note that A is a circulant matrix due to the periodic boundary conditions (1.4).

Although this system must be solved at each time step, it canebaccomplished
e ciently due to the structure of A, as well as the fact that any required matrix
factorization need only be computed once.

We can easily analyze the e ectiveness of this method by exjing the fact that
the functions @ (x) are not only eigenfunctions of the di erentiation operato D, but
also the di erencing operatorsD. and D , de ned by

fx+h) £
X ,

fx) fx h),

- (1.27)

D.f(x)= D f(x)=
from which it follows (see [3], [27]) that

A& =~ 8 = %(2 cosh  2)8: (1.28)



1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 7

and -
3 1 a, (costh 1)
at+ t)= & ; 1.29
( ) . 1+a, (costh 1) ( )
j1j= N=2+1
where = t=h?. From this representation of the approximate solution, it$ easy to

see that this method is unconditionally stable, since the apti cation factor

1 a (costh 1)
1+ a, (costh 1)

jQij= <1 (1.30)
regardless of t and N. However, as increases,Q, approaches 1, so one must
still be careful when choosing these parameters.

It is also easy to see from (1.29) that this nite di erence skkeme is second-order
accurate in both time and space, as

= =, + O(h?); (1.31)

and
Q =e ' '"+0( t?: (1.32)

1.1.3 Variable-Coe cient Problems

Now, suppose thatL(x;D) has variable coe cients. Then the functionsé& (x) are
no longer the eigenfunctions of.(x;D); in fact, the eigenfunctions or eigenvalues
are unknown. The components ofi(x;t) in the directions of & (x), j! ] < N=2, can
no longer be computed independently of one another. In othevords, the matrix

is now a dense matrix, and the e ciency of the constant-coe cient case is lost.
Furthermore, there is no simple representation of the appxonate solution that can
be evaluated at an arbitrary point (x;t).

A greater di culty arising from L(x; D) having variable coe cients is that time-
stepping methods that normally yield higher-order accuracin time for constant-
coe cient problems can fail to do so in the variable-coe cient case. To see this, let



8 CHAPTER 1. INTRODUCTION

u(x;t) be the exact solution to (1.1), (1.2), (1.4),
u(x;t) = S(x; D;t)f (x); (1.33)
and let v(x;t) be the computed solution, given by
v(x;t) = T IS(L;t)Tf(x); (1.34)

where the functionS( ;t ) is an approximation to exp[ t]andL isanN N matrix

with entries
L, =h;L(x;D)&i: (1.35)
Then we have
X X
kv(x;t) u(xt)k® = joCit) a(st)pP+ (1))
il isN=2 il N=2
= joCht) a(t)pE+ o t)j?
il isN=2 i'j N=2

je ;SO Dty T texp( LTI (x)ij +

j' j<N=2 i
I X
jne ;T ‘[exp( Lt)  S(L;tITF(X)ij + jos )
ivj N=2
Consider the term
D, =jh&;[S(x;D;t) T lexp( LOTIf (X)ij; j'j<N=2 (1.36)

When L has constant coe cients, D, = 0, since the discrete Fourier transform di-
agonalizesS(x; D ;t). However, if L has variable coe cients, thenD, = O( t xX),
where the value ok depends on the smoothness b{x) and the coe cients of L(x; D).

It follows that this error term can dominate error introduced by the approximation
of exp[ Lt] by S(L;t), thus reducing the advantage of using a higher-order time-
stepping scheme. The erroD, is the result of the phenomenon adliasing (see [27]),
which can cause undue ampli cation of high-frequency compents of the solution,



1.2. THE PROPOSED ALTERNATIVE 9

eventually causing wild oscillations. As discussed in [23he unsmoothed Fourier
method can su er from weak instability, which is caused by aliasing. Unlike strong
instability, this problem cannot be addressed simply by usg a smaller time step;
the remedy for this weak instability is to either use smooting techniques (see [3]) to
damp the high-frequency components, or to increase the nuetbof gridpoints; either
of these strategies reduces the err@, .

Given these di culties with variable-coe cient problems, it is natural to consider
whether there is some other approach that can yield an apprioxate solution u(x;t)
with the following properties:

all computed frequency components are resolved with reastnbe accuracy re-
gardless of the resolution of the spatial discretization,ral

it has a simple representation that can easily be evaluated an arbitrary point
(x;t), as well as di erentiated analytically with respect to time.

Can these simplicities associated with constant-coe cidrproblems be generalized in
some sense to the variable-coe cient case?

1.2 The Proposed Alternative

This thesis provides a new perspective towards variableacient problems, applying
techniques employed in the study of pseudodi erential opators in an e ort to relate
variable-coe cient problems to their simpler constant-c@ cient counterparts. Once
this relationship is established, we will explore the use ofumerical linear algebra in
the design and implementation of numerical methods for sahg such problems.

The basic process is to discretize the problem on &h-point grid consisting of the
gridpoints x; = jh, j =0;:::;N 1 whereh =2 =N . We then proceed as follows
to obtain an approximate solutionu(X; tfina ) for some chosen timesi, :



10 CHAPTER 1. INTRODUCTION

Precondition L (x; D) to obtain a new operator Chapter 3
C(x;D) = U’L(x;D)U, whereU is a unitary
operator

fx) = U f(x)

t=0

Setv(x; 0) = f(x)

while t <t fjna
Select a time step t Section 4.5.1
for each frequency = N:?D+ 1;:::;N=2 1, E

ComputeW!;t + t)= & ,;S(;D; t)v(;t) | Chapter2
whereS(x;D; t)=exp[ C(x;D) t]
end
vi;t+ =T W(;t+ t)
whereT is the discrete Fourier transform
t=t+ t
end
u(X; teinal ) = UV(X; teina )

While much of the remainder of this thesis will be devoted to escribing the details
of the above algorithm, two main features will be highlighteé here. First of all, a
unitary similarity transformation will be applied to the di erential operator L(x;D)
in order to transform the original problem (1.1) into an equalent problem of the
form

%‘t’+ E(x:D)v =0; (1.37)
where the new operatoiC(x; D) more closely resembles a constant-coe cient opera-
tor. The idea of using a unitary transformation to \bend" L in this manner is inspired

by the ideas expressed by Fe erman in [10].

This preconditioning of L can be used to aid any solution method for the problem
(1.37), but this thesis will present an alternative method dr this problem as well.
This alternative method is a Galerkin method that computeshie Fourier components
¢(!;t ) of the approximate solutionv(x;t). To compute each Fourier component, this



1.2. THE PROPOSED ALTERNATIVE 11

method employs the algorithms described by Golub and Meuraim [19] to compute
elements of functions of matrices. The computed Fourier cquanents can be viewed
as functions of t, resulting in a more compact representation of the approxiate
solution than can be obtained using standard time-steppinmethods.

1.2.1 Generalizing the Fourier Method

At each time step, we use a Galerkin method, computing Fouri€eomponents of the
solution at time t + t,

D E
ot + )= & ();S(GD; tvat) ;1= N=2+1;N=2 L (1.38)

using Gaussian quadrature rules.

This is the basic idea behindcollocation (see [3], [27]). However, collocation used
in conjunction with an N -point discretization of the spatial domain can requiréO(N)
guadrature nodes for su cient accuracy, particularly for igh-frequency components,
due to the oscillatory behavior of the integrands involvedrad the fact that the weights
functions in each integral are not concentrated in the domaiof integration. In
this thesis, we will develop methods that employ quadraturéen such a way that
O(1) nodes can be used for each component by working with smbhahtegrands and
weight functions that are highly concentrated. This is acaoplished by computing
orthogonal bases of appropriately chosen Krylov subspacassociated withL (x; D),
and for this reason these methods will be calledrylov subspace method®r solving
initial-boundary value problems.

In previous work, Krylov subspaces have been used with muchcgess to approx-
imate the exponential of a matrixA, see for instance [28]. Such methods use a single
high-dimensional Krylov subspace to approximate the solign operator to an ODE
of the formy®= Ay. In contrast, the methods described in this thesis employ @ir-
ent Krylov subspaces for each component of the solution, éaof which are of lower
dimension. It will be seen that our approach yields more ragiconvergence for each
component, at the expense of having to work harder to devel@n e cient algorithm
to implicitly compute and use such a large number of subspace



12 CHAPTER 1. INTRODUCTION

The upshot of our approach is a generalization of the Fourienethod to variable-
coe cient problems, in the sense that we obtain a representisn of the computed
solution u(x;t) that has the form

1 Nx2 1 . XJ !
t(x;t) = p? e Gie it (1.39)
= N=2+1 j=1
that can easily be evaluated atny time t. Unlike the constant-coe cient case, this
representation includes both temporal and spatial discreation error.

One advantage of using Gaussian quadrature in this manner ctear: because
Gaussian quadrature rules can yield high accuracy with fewaduations of the inte-
grand, they allow much more e cient evaluation of the inner goducts (1.38) than
standard matrix-vector multiplication. In Chapter 2, we will see that a second, less
obvious advantage of using Gaussian quadrature is that onarcachieve higher-order
temporal accuracy than with standard time-stepping methos, even when using low-
order quadrature rules. In Chapter 4, we will also see how Gsgian quadrature
rules can aid in time step selection. In Chapter 6, it will be émonstrated that for
some parabolic problems, large time steps can be used, thlimaating the need for
time-stepping altogether in these cases.

We will see that the challenge is to obtain the nodes and the vghts for the ap-
propriate Gaussian quadrature rules e ciently, as opposedo collocation, in which
the nodes and weights are readily available. The basic ideato apply the Lanczos
method to a discretization of the operatolL (x; D); the connection between the Lanc-
zos method and Gaussian quadrature is well-known and will beviewed in Chapter
2. In Chapter 4, we will see how the use of expression trees gpresent Lanczos vec-
tors and elements of Jacobi matrices can speed up the procesasiderably, resulting
in an algorithm that requires O(N logN) oating-point operations per time step.

1.2.2 The Uncertainty Principle and Preconditioning

We will see that the technique of computing the components 38) using Gaussian
guadrature is most e ective when the coe cients of the opertor L(x;D) are \nearly



1.2. THE PROPOSED ALTERNATIVE 13

constant”, i.e., L(x;D) is a small perturbation of a constant-coe cient operator.
Therefore, we will need to develop techniques f@reconditioning L(x; D) so that it
is well-suited for our solution process.

We can proceed by studying the geometry of the operatdr(x; D) in phase space
f(x )ix2[0,2]; 2Rg; (1.40)

where the rst coordinate represents physical space and tlsecond coordinate repre-
sents Fourier space. Theymbolof a di erential operator L (x; D) of the form (1.3) is
a function L(x; ) de ned on phase space by

: _ xn
L(x; )=e "“L(x;D)e* = a (x)(i) : (1.41)
=0
The SAK principle, proposed by Fe erman in [10] and based on the undainty
principle, establishes a connection betweeln(x; ) and the eigenvalues ol (x; D),
whenL(x; D) is self-adjoint. Our goal is to exploit this connection in ader to obtain
an approximate diagonalization ofL(x; D).

The approach can best be described using an examination ofetlsymbols of
constant-coe cient operators as opposed to those of varidd-coe cient operators.
Figure 1.1 displays the level curves of the symbol of a selfjaint constant-coe cient
operator L(D) = D? 1, which lie along the lines = constant. Figure 1.2 dis-
plays those same curves for a self-adjoint variable-coeent operator L(x;D) =
D2 @1+ %sinx). While these curves do not lie along those same lines, onenca
see that an appropriate change of variable in phase space dsnused to \straighten"
them out to some extent.

We will utilize the connection between transformations in pase space and op-
erators on functions in physical space in order to precondn a variable-coe cient
operatorL(x; D) so that its symbol L(x; ) more closely resembles that of a constant-
coe cient operator C(D). These preconditioners, which take the form of unitary
similarity transformations, will e ectively perform an approximate diagonalization of
L(x;D). We will also see that such transformations are not only vgre ective, but



TTTTTTTTTTTTTTTTTTTTT




1.2. THE PROPOSED ALTERNATIVE 15

Symbol of L(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)

L)L

X X

Figure 1.2: Symbol of a variable-coe cient operatorL(x;D) = D((1 + %sinx)D)
1+ Isinx
2



16 CHAPTER 1. INTRODUCTION

also very e cient, due to the use of symbolic calculus to compse pseudodi erential
operators.

1.3 Outline

In Chapter 2, we will construct an algorithm for solving (1.}, (1.2), (1.4) that e -
ciently generalizes the Fourier method to variable-coe @nt operators by employing
Gaussian quadrature to compute Fourier components of the laston at each time
step. We will also study the convergence properties of thidgarithm.

Chapter 3 will address the need for preconditioning that wlilbe revealed in the
aforementioned convergence analysis. We will develop wary similarity transforma-
tions that will approximately diagonalize a self-adjoint derential operator L(x; D).

In Chapter 4, we will discuss the implementation of our ovethalgorithm that
applies the methods of the preceding two chapters to solve.1}, (1.2), (1.4). This
chapter will focus on the development of an e cient algoritim, employing symbolic
calculus on di erential operators to implement similarity transformations and modi-
ed moments to construct Gaussian quadrature rules.

Chapter 5 will feature a number of applications of our algafim and discuss its
performance on these problems.

Chapter 6 will present generalizations to other classes ofgblems and discuss
possible directions for future research.

1.4 Notation

The following conventions are followed in this thesis:

A bar over a scalar, vector, or function is used to denote theamplex conjugate
of the given entity; e.g., the complex conjugate of the scalal is denoted byu.

Vectors will be denoted by bold lowercase letters, while mates will be denoted
by italic uppercase letters; e.g.u refers to a vector whileA refers to a matrix.



1.4. NOTATION 17

The superscriptH will be used to denote the Hermitian transpose of a matrix
or vector: u” = U'.

We will denote the average value of a functiori (x) on the interval [0;2 ] by
Avgf, i.e.,
vgf,i z,

Avgf = Zi f (x) dx: (1.42)
0

If u(x) is a function de ned on the interval [G 2 ], then kuk, unless speci ed
otherwise, will denote theL, norm of u, de ned by

Z, 1=2

kuk = juX)j?dx (1.43)
0

If u is a vector, then, unless speci ed otherwise&kuk will denote the vector

2-norm ofu, |
Xn - 1=2
kuk = kuk, = jujiz o (1.44)
j=1
Similarly, if A is a matrix, then, unless speci ed otherwisekAk will denote the
matrix 2-norm of A.



Chapter 2

Krylov Subspace Methods

2.1 Introduction

In this chapter, we will develop a time-stepping method foraving the equation (1.1),
(1.2), (1.4), where the operatorl(x; D) has variable coe cients. Our method will
resemble the Fourier method in the sense that we will use a fmim N -point grid
with grid spacingh =2 =N to represent functions ofx and compute approximations
to

a(l:t ) = 912:6-”" u(ty) o jlj<N=2 (2.1)

at each timet, = n t,n=1;2;:::.. To accomplish this task e ciently, we represent
u(x;t) using the solution operator S(x; D ;t) de ned in (1.14) and create a frame-
work for our algorithm. With T denoting the discrete Fourier transform, we will,
conceptually, proceed as follows:

Choose a timestep t

for n=0;1;:::
for I = N=2+1L_)':::;.N:2 1 E
0(5tna) = p-€%;S(;D; Hu(xty)
end

U(X;the1) = T 20(5t he1)

18



2.1. INTRODUCTION 19

end

This chapter is devoted to two basic problems arising from th iteration:

computing the inner products
1
Ot he1) = p?e"x ;S(x;D; tu(x;ty) (2.2)

e ciently, and

determining when the resulting algorithm converges ad !'1  and t! O,
and, if so, at what rate.

On an N -point grid, the operator L(x; D) and the solution operatorS(x; D; t) can
be viewed adN N matrices, and the quantity (2.2) can be viewed as a bilineaofm

0t nea) = €7 Sy Hu(ty); (2.3)
where 1
[&] = 1976“”‘ ; [uta)]; = u@ih;ty); (2.4)
and
xXn
Sn(t) =exp[ Lntl; [Lnlk = a (jh)[Dy i (2.5)

=0

whereDy is a discrete di erentiation operator de ned on the space ofjridfunctions.
In the next section, we will examine how the expression (2.8an be computed e -
ciently.

In this chapter we will assume thatL (x; D) is a second-order self-adjoint positive
de nite operator and prove convergence in this case. We williscuss more general
operators in Chapter 6.



20 CHAPTER 2. KRYLOV SUBSPACE METHODS

2.2 Moments and Quadrature

In [19] Golub and Meurant describe a method for computing quities of the form
u'f (A)v; (2.6)

whereu and v are N -vectors,A isanN N symmetric positive de nite matrix, and
f is a smooth function. Our goal is to apply this method withA = Ly whereLy was
dened in (2.5), f( ) = exp( t) for somet, and the vectorsu and v are derived
from & and u(t,).

The basic idea is as follows: since the matri& is symmetric positive de nite, it
has real eigenvalues
0< 1 2 N ; (2.7)

and orthogonal eigenvectors);, j = 1;:::;N. Therefore, the quantity (2.6) can be
rewritten as

u'f (A)v

u; [f (A)]jk vk
=1 k=1
XX
= u[f (Q Q)i Wi

j=1 k=1

XX
= u [Qf () Q1 Wk

=1 k=1
DA\
= U Qp f (+) Qi Wk (2.8)
j=1 k=1 =1 | |
X X X '
= fC) u; Qp: Qi Vi
=1 j=1 k=1
X T T
= f()u gjg;v:

=1

We let a= ; be the smallest eigenvalueh = | be the largest eigenvalue, and



2.2. MOMENTS AND QUADRATURE 21

de ne the measure ( ) by

8
El(:)); if <a

():S P}zl P if < s p=Eulan jEqly; (2.9)
© L g b

If this measure is positive and increasing, then the quantit(2.6) can be viewed as a
Riemann-Stieltjes integral
Zy
utf (A = I[f]= f()d (): (2.10)
a

As discussed in [7], [15], [16], [19], the integrH]f ] can be bounded using either Gauss,
Gauss-Radau, or Gauss-Lobatto quadrature rules, all of wdhi yield an approximation

of the form
X X
I[f]= w; f (t;) + vif(z)+ R[f]: (2.11)
j=1 j=1
The nodest;, forj =1;:::;K, are determined by themoments
Zy
j= ld () j=0;n2K L (2.12)

in such a way as to make the rule exact for polynomials of as higlegree as possible.
The nodesz;, j = 1;:::;M, are prescribed, and the weights;, | = 1;:::; M, are
determined by the choice of these prescribed nodes (see [&]L], [12], [22]). The
weightsw;, j =1;:::;K,andz,j =1;:::;M, satisfy
Zy Zy
wp= 5()d () z= T()d () (2.13)

where

10)= ) — =K (2.14)



22 CHAPTER 2. KRYLOV SUBSPACE METHODS

and ® .
O ER— A j=1nnm (2.15)
Z k. ... Z Z
k=1 i=1;i6j
The polynomials *;( ) are the Lagrange polynomials satisfying; (tx) = jk, j;k =

221 Thecaseu =vVv

We brie y examine the case wher@l = v. In this case, the measure ( ) is a positive
increasing function, and it is known (see [41]) that

n #2

f @K)( )Zb ¥
( t) d() a< <b: (2.16)

RIE= “aor

i=1
For the measure ( ), it is possible (see [42]) to de ne a sequence of polynonsal
Po( ), pz( ), ::: that are orthonormal with respect to ( ):

Zy
p()p()d ()= j (2.17)

and p; is of exact degreg. Moreover, the roots ofp, are distinct, real and lie in the
interval [a; 4.

This set of orthonormal polynomials satis es a three-termecurrence relationship
(see [42)):

B+ ()= ( DRC) 5 () p() O p() L (2.18)

_ R,
provided that _'d ( )=1.

In matrix form, this can be written as

P( )= Jkp( )+ kbx( )ex; (2.19)



2.2. MOMENTS AND QUADRATURE 23

where

; J = : (2.20)
K 2 K 1 K 1

K 1 K

and e, is the kth standard basis vector with all components equal to zero e&pt for
a 1 in the kth position. The tridiagonal matrix Jx is known as aJacobi matrix.

The eigenvalues ofx (which are the zeroes ofy ) are the nodes of the Gaussian
guadrature rule. The weights are the squares of the rst eleemts of the normalized
eigenvectors ofJy (see [22]). The orthonormal polynomials can be computed by
applying the symmetric Lanczos iteration to the matrixA, with starting vector u.

222 Thecaseu 6 v

The caseu 6 v can be handled in one of two ways. One is by reduction to the easf
u = v, as discussed in [14]: b and v are real, then we can use polar decomposition

utf (A)v = % (u+ VP A u+v) U VAU v) : (2.21)

A second method, discussed in [19], is to view this case as aybation of the u = v
case: we can choose a small positive constanind compute

qu(A)v:} utf(A)(u+ v) u"f(Au : (2.22)

The constant should be chosen so that the measure induced byand u + v is
positive and increasing; this issue will be addressed in Gitar 4. In this case, to
compute u"f (A)(u + v), two sets of polynomialsfp( )g, fg( )g are computed

that satisfy 7
b

p()g()d ()= j; (2.23)



24 CHAPTER 2. KRYLOV SUBSPACE METHODS

and these polynomials satisfy the recurrence relationstsip

iP+1( ) ( () 5o () pe() O
iga() = ( () 5 19 () () O

or, in matrix form,

p( )
a( )

JePC )+ kpe( e
Ja( )+ wac( e

wherep( ) is de ned as in (2.20),q( ) is de ned similarly, and
2 3

K 2 K 1 K 1

K 1 K

pu( )
()

1;
1

(2.24)
(2.25)

(2.26)
(2.27)

(2.28)

As in the caseu = v, the eigenvalues of the Jacobi matriXxJx are the nodes of the

Gaussian quadrature rule, and the weights are the productd the rst elements of

the left and right normalized eigenvectors ofx . The polynomials can be computed

by applying the unsymmetric Lanczos iteration to the matrixA with starting vectors

uandu+ V.

We will see that either method for handling the case af 6 v has its advantages.

In most cases, the decomposition (2.21) is preferable besaut relies on the sym-

metric Lanczos iteration, which is, numerically, more stde than its unsymmetric

counterpart; see [21] for details. The second approach, hewer, has the following

advantages:

It leads to a somewhat more accurate algorithm for solving PB) as will be

discussed later in Section 2.4.

It also leads to a more e cient algorithm for solving PDE, as vill be discussed



2.2. MOMENTS AND QUADRATURE 25

in Chapter 4.

2.2.3 Gauss-Radau Quadrature Rules

The integrals we are computing feature an integrand that deys rapidly away from
the smallest eigenvalue = ;. Therefore, it is wise to ensure that at least one
guadrature node is near i, so that the integrand's main contribution to the value of
the integral is computed as accurately as possible. To thahd, we employ Gauss-
Radau quadrature rules. Gauss-Radau rules are extensiorfdtee standard Gaussian
guadrature rule in which one nodez; is prescribed. This extended rule can be con-
structed simply by proceeding as with Gaussian quadraturexcept that the matrix
Jk in (2.20) is augmented so that it has one additional row and éamn, and also has
one prescribed eigenvalue, (see [15]). We use the following results (see [19]):

Theorem Supposeu = v in (2.6) andf is such thatf @"*Y ( )< 0, foralln 0 and
all 2 (a;b. Let Ugg be de ned as

X
Usrlf1= " W2 (t7) + Vif (a); (2.29)
j=1
where wa, vi, t? are the weights and nodes computed witk; = a, and let Lgg be
de ned as
X
Lorlf1= " wif () + vif (b); (2.30)
j=1
wherew?, v?, tP are the weights and nodes computed witk, = b. Then, for all K we
have

Ler[f] I1[f] Usrlf]; (2.31)

and, for some 2 (a;b),

f(2K+1)()Zb K

Iff]  Uerl[f]= K + 1) ( 9 . ( ) d() (2.32)



26 CHAPTER 2. KRYLOV SUBSPACE METHODS

f(2K+l)()Zb K

1] LGR[f]:m ( b ) d () (2.33)

For the integrandf ( ) = e !, wheret is a positive constant,Ugr[f ] tends to be
a relatively sharp upper bound, sincé ( ) decays very rapidly away from = a, and
therefore is well approximated byf (a)1( ) where 73 ( ) was de ned in (2.15).

2.3 Formulation

We are now ready to state in full detail an algorithm to solve 1.1), (1.2), (1.4) using
Gaussian quadrature rules. First, we describe how a compomef a solution to (1.1),
(1.2), (1.4) can be approximated. The following algorithm pproximates the quantity
hu;exp[ L(x;D) tJvi by hu;wi where the functionw belongs to theK -dimensional
Krylov subspace

K(v(x);L(x;D);K) =spanfv(x);L(x;D)v(x);:::;L(x;D)* v(x)g: (2.34)

Explicit time-marching methods compute an approximation bthis form as well, but
a consequence of the following algorithm is that a di erentihear combination of the
basis functions in (2.34) is used for each component in ord& maximize accuracy
for that component.

Using a Gaussian rule and a Gauss-Radau rule, we will compwtpper and lower
bounds on the quantity hu; S(x; D ; t)vi:

Algorithm 2.1  Given functions u(x) and v(x), a self-adjoint di erential opera-
tor L(x;D), and a time t, the following algorithm computes boundsz; and z, on
hu; S(x; D; t)vi.

o o= hu;vi
fo=0
Gb=0
fi=v=y



2.3. FORMULATION 27

0= U=o

forj =1;::,;K
i = hg;L(x;D)fji
rj = L(x;D)f; if i afj) 1
p=LXD)g g j 1G 1
i =i
fioa = 1=
g+1=B=j

end

Let Jx be theK K matrix de ned by (2.28)
z1= o o[exp( Jkt)]u
Let a be an approximation to the smallest eigenvalue af(x;D)
Solve gk al) = k kex
K+ = at

Let Jx +1 be the matrix obtained fromJx by adding

k +1 to the diagonal, ¢ to the superdiagonal

and g to the subdiagonal

;= o o[exp( Jk+1t)]1s

Some remarks about this algorithm are in order:

For the Gauss-Radau rule, an approximation to the smallestigenvalue of
L(x; D) is required. This approximation can be obtained by using # symmet-
ric Lanczos algorithm on a matrixL that represents a discretization ot (x; D),
with initial vector &y, where&, was de ned in (2.4).

If any of the Gaussian quadrature nodes are already close feetsmallest eigen-
value of L(x; D), it is possible that k.; may be positive, in which case the
resulting Gauss-Radau rule should not be used. This is acllyaa welcome

scenario, because our goal was to ensure that at least one @edhs placed near
the smallest eigenvalue. Since one of the Gaussian quadratunodes satis es
this condition, we can simply use the Gaussian rule instead the Gauss-Radau

rule and save computational e ort.



28 CHAPTER 2. KRYLOV SUBSPACE METHODS

The preceding algorithm serves as the cornerstone of ourw@n method, which we
now present:

Algorithm 2.2 Given u(x; 0) = f (x), a nal time ts,, and atimestep t such that
tina = ) t for some integer, the following algorithm computes an approximation
t(x;t) to the solution u(x;t) of (1.1), (1.2), (1.4) at gridpoints x; = jh for j =

0;%:::;N 1withh=2=N andtimest=n tforn=21;:::;tfna = t.

u=f

t=0

for n=1;:::;tina = t do
for ! = N=2+1;:::;N=2 1

Computeu; = h& ;S(x;D; t)&i
using Algorithm 2.1
Choose a positive constant,
Computeu, = ha ;S(x;D; t)(& + )i
using Algorithm 2.1
0!n+1 =(uz2 up=,
end
W = i ijan=2 01718

end

We now make some observations about the preceding algorithm

The rst application of Algorithm 2.1 calls for the use of thesymmetric Lanczos
algorithm, whereas the second application calls for the uptemetric algorithm.

The measure in the second integral is complex, while Gaugsigquadrature is
meant to be applied to integrals whose measures are positiaad increasing.
While this may seem inconsistent, it is actually not, becawgsit can be shown
that in the case of a complex measure, the quadrature rule ltprovides the
same level of accuracy in the sense that the rule is exact foolpnomials of



2.4. CONVERGENCE ANALYSIS 29

degree K 1 or less. Further discussion of the complex case can be found
[39].

It is natural to ask whether it is necessary to select a timesp t, instead of
simply computing the solution at time tsj,yy immediately. Unfortunately, the
latter approach is not practical because akiny increases, so does the quadra-
ture error R[f ]. This occurs because Gaussian quadrature rules interptdahe
integrand at the nodes and integrate the interpolant exacyl on the interval
[a;H, and for largert, the integrandf ( )= e ' becomes more di cult to ap-
proximate accurately using a low-order polynomial interplant. In Chapter 3
we will see how preconditioning techniques applied tb(x; D) can be used to
alleviate this di culty to some extent.

Note that we have not indicated how to select the parameterst and , used in
Algorithm 2.2. We will discuss strategies for selecting tlse parameters in Chapter 4.

2.4 Convergence Analysis

We wish to prove that the approximation ufx;t) obtained from Algorithm 2.2 con-
verges to the exact solutionu(x;t) of (1.1), (1.2), (1.4)as t! OandN !1
However, it is necessary to modify Algorithms 2.1 and 2.2 inrder to facilitate a
proof. The modi cations are as follows:

We need to be more speci c about how the entries of the Jacobiatnices are
computed in Algorithm 2.1; we will use a discretization suchs the one described
in the beginning of this section.

We must compute quantities of the formu'f (A)v, with u 6 v, using the
decomposition (2.21) in order to guarantee that for each iegral, the measure
is real, positive and increasing. Use of this decompositiomill also guarantee
that the Jacobi matrix Jx computed by Algorithm 2.1 is symmetric positive
de nite.



30 CHAPTER 2. KRYLOV SUBSPACE METHODS

Because (2.21) applies to real vectorsand v, we will compute the components
of the discrete sine and cosine transforms ofx:t), rather than the standard
discrete Fourier transform.

2.4.1 Fourier Series and Trigonometric Interpolation

E ectively, Algorithm 2.2 computes an approximation of the Fourier interpolant of

u(x;t), )
NX 1
Ity u(x;t) = 91: e™ n(;t) (2.35)
= N=2+1

where the coe cients¥(!;t ) are obtained by computing the discrete Fourier transform
of u(x;t). The following result from [27] provides a bound for the irgrpolation error.

Theorem 2.1 (Gustafsson, Kreiss, Oliger) Let u be a 2 -periodic function and
assume that its Fourier coe cients satisfy an estimate

_c

ja(h)j W 1'60; m>1 (2.36)
Then

2 1 2N +1

ku() Intyu()ke p%(sz)lm + (N )B, (2.37)

where
x 1
By = e (2.38)

Depending on the smoothness of the exact solutiar(x;t), this interpolation error
can be a source of signi cant spatial discretization erromarticularly for hyperbolic
problems.

The following result from [27] will also be useful in our angsis.



2.4. CONVERGENCE ANALYSIS 31

Theorem 2.2 (Gustafsson, Kreiss, Oliger) Let f (x) have the Fourier series

X
11 )e™ (2.39)
1

and let Inty f (x) be its Fourier interpolant of degreeN,

1 Nx2 1
Intyf (X) = p=— 1 )e™ : (2.40)
2 .
I = N=2+1
Then %
1) = {0 +N); = N=2+1;:::;N=2+1; (2.41)

=1

In particular, if f(! )=0for jlj N=2, then Intyf f.

2.4.2 Application of Di erential Operators

The interpolation error described above is not the only soae of spatial discretization
error that we must address in our analysis. Suppose that wesdretize the operator
L(x; D) on a uniform grid of the form

X =jh; j =0;::N L h=2=N; (2.42)

representingL(x; D) by an N N matrix Ly. At each timet, for which we compute
the approximate solutionufx;t), the error in the coe cients fi(!;t ,) up includes
spatial discretization error that arises from the discretation of L(x;D) and the
previous solutionu(x;t, 1). Speci cally, if fy is a gridfunction representing a function
f(x) and gy = Lnf, then gy is a gridfunction that represents a functiong(x), where

g(x) = Int n (L(x; D)[Intn T (X)]) ; (2.43)

where Inty f (x) denotes theN -th degree Fourier interpolant off (x) de ned in (2.40).



32 CHAPTER 2. KRYLOV SUBSPACE METHODS

We now examine in detail the process of applying am-th order di erential oper-
ator L(x; D) of the form (1.3) to a function f (x) that is represented by gridfunction
fn on anN -point uniform grid (2.42). From fy we can obtain the Fourier coe cients

of
1 X
fn(X) =Int of (X) = p=—= ™ 1); (2.44)
2 I = N=2+1
where (see [27])
h X1t
(1) = p? e "M f (jh): (2.45)
j=0
It follows that for O m,
1 X
D fn(X)= p=— e (i) f{!): (2.46)
2 = N=2+1

Let a be the gridfunction representing Infa (x), and let f be the gridfunction
representingD fy (x). Obviously, we can compute a gridfunction representing

[Intya (X)]D fn(x) a (x)D f(x) (2.47)

simply by multiplying a andf component-wise. However, this course of action re-
sults in a needless loss of information about the product figa (x)]D fy\ (X), because
we can obtain thecompleteset of Fourier coe cients of this function by re ning our
grid.

We can proceed by computing Infy [Intya (x)] and Into;y D fy (). This is easily
accomplished by performing a @ -point inverse FFT on the known Fourier coe -
cients of these functions. Then, we can perform componentse multiplication on
the re ned gridfunctions and perform a A -point FFT to obtain the full set of Fourier
coe cients of the product.

By performing this grid re nement whenever we need to multily two gridfunc-
tions, we ensure the most accurate inner products possibleven the information we
have about the coe cientsa (x), =0;:::;m, and any functions to whichL(x;D)



2.4. CONVERGENCE ANALYSIS 33

is to be applied. This technique is crucial when the coe ciets of L(x;D) are not
smooth, as will be illustrated in Chapter 5.

For convenience, we will refer to the approach of computindhé¢ component-wise
product ofa andf as the xed-grid implementation, while the approach of re ning
the grid and then computing the component-wise product of # interpolants on the
ner grid will be called the variable-gridimplementation.

2.4.3 The Modi ed Algorithms

We will now state versions of Algorithms 2.1 and 2.2 that havbeen modi ed accord-
ing to the conditions given at the beginning of this sectionln the modi ed version
of Algorithm 2.1, we will use a variable grid implementation initially representing
functions on a uniformN -point grid of the form (2.42). A function f (x) de ned on
[0; 2 ] will be represented by the corresponding gridfunctiofy,, which is anN -vector
with components fy]; = f(xj), forj =0;:::;N 1. The grid will be re ned as
needed to obtain complete sets of Fourier coe cients of futions obtained by apply-
ing L(x; D), as discussed above. As a result, the modi ed algorithm wiemploy a
sequence of grids withtM; = 2/ N points, wherej =0;1;:::;K.

We will use (1.22) to compute the discrete inner product of tavgridfunctions, and
discretize a di erential operator L(x; D) of the form (1.3) using anM;  M; matrix
Lm; with entries de ned by (2.5), where the discrete di erentidion operator Dy, is
given by

Dw; = T ;T s (2.48)

J

where Ty, denotes the discrete Fourier transform of1; points and y, is a diagonal
matrix with diagonal elementsi! , for! = M;=2+1;:::;M;=2 1.

Given a gridfunction fy, the gridfunction fy,, for M > N , is de ned by interpo-
lating the values offy on the ner M -point grid:

1 Nx2 1 . " h X1 #
[fm] = P gih w p% e "M NIyl 5 =00 M1 (2.49)
= N=2+1 k=0



34 CHAPTER 2. KRYLOV SUBSPACE METHODS

wherehy =2 =M and hy =2 =N . Using this multilevel discretization ofL(x;D),
we can now describe our modi ed version of Algorithm 2.1.

Algorithm 2.3 Given real-valued gridfunctionsuy and vy de ned on an N -point

uniform grid (2.42) such that the measure (2.9) is positive ral increasing, a self-
adjoint di erential operator L(x;D) of the form (1.3) and a timet, the following

algorithm computes boundsz; and z; onuy;, exp[ Ly, tlvu, -

— H
0 0= UyVN
f|i|' = VN=o0

1 — -
Ov = Un= o

=0

aN =

M =2N

forj=1;::5;K
hi, = Luf},
i =[gul"hi,
rh = hiy it afl
P =|—Mg{v| _JgM+_j 19{\/|1
i = eI,
Bt ==
On’ = Pl
M =2M

end

Let Jx be theK K matrix de ned by (2.20)
z;=h o ofexp( Jx )]
Let a be an approximation to the smallest eigenvalue df
Solve gk al) = k kex
K+ = at g

Let Jk +1 be the matrix obtained from Jx by adding

k +1 to the diagonal,  to the superdiagonal

and ¢ to the subdiagonal



2.4. CONVERGENCE ANALYSIS 35

Z;=h o o[exp( Jk+1t)]11

We now state the modi ed version of Algorithm 2.2, employind2.21) to compute the
Fourier components ofufx;t,). In this modi ed algorithm, we use the gridfunctions

[C!]j:pltcosth ); j=0;::;N 1 V=1 N=2 1 (2.50)
[é!]j:pl:sin(!jh ); j=0;::N 1, ! =1;::,N=2 1 (2.51)

and 1
[€o); = pz—; j =0;::0N L (2.52)

Also, it will be assumed that all bounds on quantities of thedrm u“H,IK Sue ( um,
are computed using Algorithm 2.3.

Algorithm 2.4 Given a gridfunction fy representing the initial dataf (x) on a uni-
form N -point grid of the form (2.42), a nal time ts,, and a timestep t such that
tina = Nt for some integem, the following algorithm computes an approximation
uj””l to the solution u(x;t) of (1.1), (1.2), (1.4) evaluated at each gridpoini; = jh
forj =0;1;:::;N 1with h=2 =N andtimest,=n tforn=0;1;:::;tfina = t.

a0 = fy
for n=0;1;:::;tfina = t do
Choose a constant o
Compute boundse;; and e;, for (&g ou”)ﬂK Sue ( )(€  ott")my
Compute boundse,; and e, for (&, + ou”)K'AK Sue ( t)(€o+ o)y
Let 05*' =(ex ey)=(4 o) wherei and
are chosen to minimize error im{*
for ! =1;:::;N=2 1
Choose a constant
Compute boundsc;; and ¢, for (€ | br”)ﬂK Swue ( t)(€ e )m
Compute boundss;; and sy, for (& | u”)ﬂK Sue ()& - IV]



36 CHAPTER 2. KRYLOV SUBSPACE METHODS

Compute boundsc,; and c,, for (€, + br”)ﬂK Sue ( (€& + 18",
Compute boundss,; and s,, for (& + | u”)HK Sue ( O + 1 8")u,
Letc =(ci ©j)=(4 ) wherei and]j

are chosen to minimize error irg
Letsi =(sa $Sy)=(4 ) wherei and ]

are chosen to minimize error irs
oMt = ¢ + is,
o't =¢ s
end
u,n+1 =T 10n+1

end

Various strategies can be used to determine whether the uppe lower bound on each
integral should be used in computing the approximation to edn component of the
solution. For example, a Gauss-Radau rule with an appropit@ choice of prescribed
node can be compared with the approximation computed using @aussian rule in
order to estimate its accuracy. Alternatively, Gauss-Krorod rules can be used from
the previously constructed Gaussian rules to estimate theceuracy of each bound;
for details see [5].

2.4.4 Consistency

We will now state and prove a result describing the local truzation error incurred in
each time step during the execution of Algorithm 2.4. For coenience, we denote by
V\ the space of real-valued 2-periodic functions of the form

1 X
f(x)= p=— é* f(1); 0<x< 2; (2.53)
2 . -
= N=2+1
and assume that the initial dataf (x) and the coe cients a (x), =0;:::;m, of the

operator L (x; D) belong to Vy.
Under this assumption, we have the following sources of distization error to
consider:



2.4. CONVERGENCE ANALYSIS 37

Let us recall the error term (2.16) from the Gaussian quadrate rule:

feag)“e ¥ "
RII= oy ,:1( t) d () a< <b: (2.54)
Substituting f ( )= e !, we obtain
tKea t Zy K #
R[f]= ( t) d() a< <b; (2.55)

(2K)I a j=1
from which it follows that the temporal local truncation error in each upper
bound computed using Algorithm 2.3 isO( t?¢). Similarly, the temporal lo-
cal truncation error for each lower bound iO( t#*1), due to the additional
prescribed node in Gauss-Radau quadrature.

In addition, spatial discretization error arises from the tuncation of the Fourier
series in computing

1 Nx2 1 .
(X, ty) = p? ex a: (2.56)
= N=2+1
Our assumptions on the initial data and coe cients ofL(x; D), in conjunction
with the variable-grid implementation of Algorithm 2.3, elminate any addi-
tional spatial discretization error.

We will use the bounds (2.37) and (2.55) to prove that Algoriim 2.4 does in fact
solve (1.1), (1.2), (1.4) in the limitas x, t! 0. We will denote byS( t; x;f)

the result of applying Algorithm 2.4 to the function f (x) using a discretization of
space and time with spacingé and t, respectively. To prove that Algorithm 2.4 is
consistent, we will make use of the following lemmas.

Lemma 2.1 Letf 2 Vy and L(x;D) be an m-th order di erential operator of the
form (1.3) such that each coecienta (x), = 0;:::;m, belongs toVy. Then



38 CHAPTER 2. KRYLOV SUBSPACE METHODS

L(x;D)f 2 Voy and
e L(x;D)fi=elLyfy; ! = M=2+1;:::;M=2 1 (2.57)

for M = 21N, wherej is a positive integer.

Proof Forj =1, we have

xn
L(x;D)f (x) = a (x)D f(x)
0 w1 10 - 1
xn _ .
= @91: a()exA @p]': )i ) XA
=0 2 1= N=2+1 2 = N=2+1
8 2 39
< g Mgt 1 et _ o =
= . 197 4197 a()f()i) et s
=0 l= N=2+1 = N=2+1 '
8 n #9
xn < 1 Nx2 1 1 X 1 ) i =
= P P aMmfC 1)i)é
=0 2 = N=2+1 2 N +1 '
8 2 . 3 9
xw < ¢ Xt 4 _ =
= = p=—4 amfc 1)i)ser
=0 - N+ 2 = N=2+1 '

thus L(x;D)f 2 Voy. Theorem 2.2 immediately yields (2.57)2

Lemma 2.2 Let A be ann n symmetric positive de nite matrix. Let u and v be
xed vectors, and deneu = u+ V. Forj a positive integer, letg-( ) be de ned by

g()= %eIT" erku Kk3; (2.58)

where T is the Jacobi matrix produced by the symmetric Lanczos iteteon applied
to A with starting vector u . Then, for some satisfying 0< <

g() &(C )

— TAj
= uAv+
2




2.4. CONVERGENCE ANALYSIS 39

X K .
el TXT XTAK %rel T ¥ euTu+ (2.59)
|(=|<II
2 XK 0 . #o0
5 e] TEXT XTAK 'ref T ¥ equTu
k=K _
Proof From XTX =1 we obtain
. -
ar’ _ X de(XTAX )i k1
d i d
k=0
X1 .
= TH(XYTAX + XTAX T * *
k=0
X1 .
= TKIXO)T(X T +ref)+(ecr’ + TXT)XT! kK ?
k=0
X1 .
= TEIXOTX T +(XO)Tr ef + exr™X%+ TXTXqT! K !
k=0
X1 . .
= TXOTX TV K+ THXO)Tr e TV K 1+
k=0
TkeKrTxOTj k 1+ Tk+1xTxO-|-j k 1
= (XOTX TV+ TIXTXO4+
v 1
THXOTr e TV ¢ T+ TrerTXOT! * &
k=0
From symmetry, it follows that
1d 4 Ty Ty T XlTk Ty ol T Kk 1.
>q elT'e; =ef(X)™X Tle;+ el TK(XO)Tr el T e (2.60)
k=0

From repeated application of the relationAX = X T +r e}, we obtain

. & .
AX =X T+ AkrefT KL (2.61)
k=0



40 CHAPTER 2. KRYLOV SUBSPACE METHODS

which yields
1d . _ X1 .
—— elTley = e](X)TX Tley+ el TKXOTr el T/ ¥ e,
2d k=0
" ) - #
_ X1 .
= e (X9T AIX Afr el T K1 oe+
k=0
X1 .
eI TEXOTr ef T! ¥ e
k=0

= e](X9TAIX e +
W 1
el TX)Tref TV ¥ 1oy el (XO)TAKr ef TV ¥ 1o
k=0
= e](X9TAIX e +
W 1
e] TYXOT (XOTAK refT! ¥ le
k=0
= e](X)TAIX e +
W 1
el (THXT+ TXYT (XOTAK refT! ¥ e,
k=0
= el(X)TAIX e +
W 1
el TEXT XTAK °r el T ¢ g
k=0
= e(XOTAIX e +
XK .
e] TEXT XTAK 'ref Tl K tep:
k=K

From the relations

0 1 utv+ vlv

u
X &= 2 X0, = dvr Vv, .
"k T kY T kg

(2.62)



2.4. CONVERGENCE ANALYSIS 41

we obtain
mn . #
1 dTr’ ,
gjo() = é e-]l_-d—elku k%+2€ITJel(UTV+ VTV)
= el(X9)TAIX e;uTu +
i K
0 .
el T"XT XTAK relT! ¥ leuu +
k=K
e;T e (u'v+ viv)
;
u'v+ vy j
= Vv ———u Au+
uTu
j)(K
0 .
e] TEXT XTAK refT *leuTu +
k=K
T T
o uTv+ vy
uTAlu —————
uTu
i K
. o _
= uTAlv+ el TEXT XTAK refTh ¥ fepuTu
k=K

The lemma follows immediately from the Taylor expansion ofj ¢ ). 2
Corollary 2.1 Under the assumptions of the lemma,

g() &( )_ i\
' 2' =u'Alv; (2.63)

for0 j< 2K.

We can now bound the local truncation error in each Fourier eoponent of the com-
puted solution.

Theorem 2.3 Let L(x;D) be a self-adjointm-th order positive de nite di erential
operator with coe cients in V, and letf (x) 2 Vy. Then Algorithm 2.4 is consistent;
i.e.

:S( t x:f) S(:D; t)fi=0( t*¥); 1 = N=2+1;:::;N=2 1. (2.64)



42

CHAPTER 2. KRYLOV SUBSPACE METHODS

Proof Let g( ) be the function from Lemma 2.1 withA = Ly, ,u= ¢, andv = f.

Furthermore, de ne

M= fTLY, f (2.65)

and denote the entriesT , by

Finally, let o( )= ku

Corollary 2.1,

he;u(; )i o =

2(!)

N (2.66)
K 2(!) K 1(!) K 1(!)
K 1(!) K(!)

koand k()= kr,k,. Then, by Lemmas 2.1 and 2.2, and

g( 1)
2

g(1)

he L(x;D)fi

— M ;LD)Yfi cfL),, f+

)

reg T % te; +
1 =0

X K d
e] —

d,
t2K)

TEXT XLy,
k=K
O(
t2K
(2K)!
O(
t2K

(2K)!

d
e}I

t2K )

TEXT  XTLy, reg T te; +

1 =0
mn 1 #
j T K j 1
T! exr LMK
i=0

e;

% reg TN 'er +

1 =0

Oo(, t*)
t2K eT i

(KNt d,

1 t* d

- T TTK 1
22K d, kr ke, T “ex

K 1

exr’ reg TN eg+ O(, t%)

!
1 =0

2 t2K )

+O(

1 =0



2.4. CONVERGENCE ANALYSIS 43

1 t*¥ d )
E(ZK)!;(O(!) k(1)) !=o+0(! )

= O( t*): (2.67)
A similar argument applies tohs, ;u(; t)i s. 2

It is important to note that the spatial error depends heaviy on the smoothness of
the coe cients of the operator L(x; D), as well as the initial dataf (x).

2.45 Stability

We now examine the stability of this time-stepping algoritim.

Theorem 2.4 Let L(x;D) be a self-adjoint positive de nite di erential operator with
coe cients in Vy, having smallest eigenvalue ;. Then, for t> 0Oand x=2 =N,

KS( t; x;u) S( t; x;vk e * 'ku vk+ O( t¥); (2.68)

whereu and v are 2 -periodic functions belonging tovy and

h i
= N=2+1 N=2 1 - (2.69)

Proof Let g ( ) be the function from Lemma 2.2. From the Iemmang(O) is linear in
v. The result then follows at once from Theorem 2.32

2.4.6 Convergence

We are now ready to state and prove the principal result of tilsi thesis. As with the
Lax-Richtmyer Equivalence Theorem for nite-di erence me¢hods, the consistency
and stability of Algorithm 2.4 can be used to prove that it is &0 convergent.

Theorem 2.5 Let u(x;t) be the solution of (1.1), (1.2), (1.4), whereL(x;D) is
a self-adjoint positive de nite di erential operator with coe cients in Vy and the
initial data f (x) belongs toVy. Furthermore, assume that the Fourier coe cients



44 CHAPTER 2. KRYLOV SUBSPACE METHODS

fa(; t)gofu(x; t)= S(x;D; t)f (x) satisfy an estimate

C

ot i o

. 1'80; O t tina s M> 1 (2.70)

Let &(X; tfina ) be the approximate solution computed by Algorithm 2.4. If

. Mo 2
Xl;ln;l! 0 t =0 X= N’ (2.71)
then Algorithm 2.4 is convergent; i.e.
Jim - Ke( S tina ) U(S tinal )K= 0 (2.72)

Proof Let e,(x) = t(Xx;t,) u(;ty): Then, by Theorems 2.1, 2.3 and 2.4, there exist
constantsC; and C, independent of x and t such that

Kenrak = Ko ;ther)  U(;the)K

= kS( t; x;e(;tn))  S(D; tu(;ta)k
k S(C 6 xie(;th))  S( 6 xju(sta))k+
kS( t; x;u(;ta))  S(D; tu(;ta)k

e !t 'ke,k+C, tKX+C, XM

which yields
e tlfina 1 2K .
kenk ﬁ Cl t + C2 X

which tends to zero under the given assumption®

2.4.7 Summary

While Algorithm 2.4 has been shown to converge under modestsamptions on the
coe cients of L(x;D), convergence tends to be more rapid when the coe cients of



2.4. CONVERGENCE ANALYSIS 45

L(x; D) are smooth. To see this, consider an integral of the form
Z N
I ( t)= ele tvc g = e 'd.(); j!j<N=2 (2.73)

1

where&, was de ned in (2.4). Algorithm 2.3 computes an approximatio this integral,
F( t)=¢ele T ‘e (2.74)

whereT is the K K Jacobi matrix produced by the symmetric Lanczos algorithm
applied to the matrix Ly, dened in (2.5) with initial vector e/, de ned in (2.4).
Thus we have

Lm, X = XT +ref; XOX =lIx; Xe=8: (2.75)

We can express the erroE, ( t) = & ;S(x;D; t)&i L ( t)as

E.(t) = mf(LxD)ei ()
Xy | |
- j—t'(m_ L(xDY&i eiTley)
j=0
t) o ,
= j—'(m‘ L(x;D)Yé&i ey, & +
j=0 7~
efLl, & el X"XTley)
DS i _ :
= j—t'(ha L(;DY&i é&'Ly & +
j=0 1
e (Lhy, X XThey)
S ti h — ,
= e he;L(x;D)é&i &Ly &+
=0 );1 .
eH Ly rekTH © 1 e (2.76)
k=0

(2.77)



46 CHAPTER 2. KRYLOV SUBSPACE METHODS

This expression yields the following result:

Theorem 2.6 LetL(x;D)= C(x;D)+ V(x;D), where

X0 X
C(x;D) = cD; V(D)= v (X)D : (2.78)

=0 =0

Then, for xed N andj! j <N=2,

E( t)= O( t*XkVy, k): (2.79)

Proof We rst consider the expressionel T/'e;, wherej is a positive integer and
K> 1. Then
1= Ty = kVMK & kz: (280)

It follows from the fact that T is tridiagonal that
Mk K Vi kk3Lw, K 1 (2.81)
and therefore, for0 k<j 1,
oLy, rimT % ey 3 ¢ "2KkVi, kkLy, K 2 (2.82)

If K =1, thenr = Vy, &, and therefore

JéﬁLKAlr[TJ K l]llj k VMlkkLMlkj 2: (283)
Next, we consider the expressiok,; = h& ;L(x;D) &i &f '—JMK & , wherej is a
nonnegative integer. By Lemma 2.1E,; =0for ] 2K. Forj> 2K, we dene

fi.o (x) = L(x;D) & (x) for any nonnegative integer . Furthermore, for even positive
integers M we de ne the following operators on the space of continuousirfctions
dened on [Q;2 [



2.4. CONVERGENCE ANALYSIS a7

Pu is the orthogonal projection ontoVy :

1 2 1
Puf (X) = P éx £11): (2.84)

= M=2+1

v is the composition ofPy, and the M -point interpolation operator, using an
M -point uniform grid of the form (2.42):

1 MR ' 2
wf(X)= p=— d p— em"2Mf(Gh) ; h= o (289
2 1= M=2+1 2 j=0

By Theorem 2.2, iff 2 V, then yf =f.

Using these de nitions, we obtain

= e ;L(x;D)eai e'Ly &
M s[LOGDY 2 ( meLOGD) mg Y I i
hx ;[(C(x;D)+ V(x;D))L(x;D) * 1

M (COX;D)+ V(X;D)) wme( mcL(X;D) MK)j K Uf 1 i:(2.86)

Let j = 2K +1. By Lemma 2.1, fix (X) 2 Vu,, from which it follows that
C(x;D) fix 2 Vu, , and therefore

Eiok+1 = Mk s[V(XD) M VOGD) my Ik (2.87)
from which it follows that
JEi ok+1] 2KV, KKLy k% (2.88)
In general, we have

Mk sILOGDY 2 ( mL(GD) wm )Y I i
Mk ;[COGDY 2 (wmC(XD) wm ) * Ik i+

Eyj



48 CHAPTER 2. KRYLOV SUBSPACE METHODS

ik J[Ej 2« (D) Emeyj 2 (D) ik

= M J[E) k(D) Ewmyy ac (X D)[fix | (2.89)
(2.90)
where
Ej «(x;D)=L(x;D) * C(x;D) *; (2.91)
and

EMK;j ZK(X;D):( MKL(X;D) MK)j 2 ( MKC(X;D) MK)j ZK: (292)

It follows that for xed t, E,( t) ! O linearly with kVy, k. By Lemma 2.1, the
terms in (2.76) that are of order< 2K in t vanish, which completes the proof2

An mth-order operator L(x;D) of the form (1.3) can be written asL(x;D) =
C(x;D)+ V(x;D) where

xn Z,

C(x;D) = cD; c¢c = 912: a (x)dx; =0;::0m; (2.93)
=0 0
and
X
V(x;D) = v(xXD; vX=a((x) c,; =0;::;m: (2.94)

=0

Suppose that each coe cienta (x) of L(x; D) has Fourier coe cients f&a (! )g that
satisfy c
ja (1)j J'T I 60; (2.95)

where eachC is a nonnegative constant, with the convention thaC =0 if a (x) is
a constant. Then
kKVnki  mC(N=2)dma *1 (2.96)



2.4. CONVERGENCE ANALYSIS 49

where the constantC depends on the constant€ and N, and

Onax =  Max p: (2.97)

0 m;C 60

In the next chapter, we will attempt develop techniques to pecondition L(x; D) so
that it has smoother coe cients, in an e ort to reduce kVyk; .



Chapter 3
Preconditioning

In Chapter 2 we presented algorithms described for solvinge initial-boundary value
problem (1.1), (1.2), (1.4) using Gaussian quadrature, anshowed that these algo-
rithms yield greater accuracy in the computed solution whethe operatorL (x; D) has
smooth coe cients. In this chapter, we will develop an algathm for preconditioning
a di erential operator L(x; D) to obtain a new operatorC(x; D) = UL(x;D)U ! that,
in some sense, more closely resembles a constant-coe ciepterator. To accomplish
this, we will rely on ideas summarized by Fe erman in [10].

3.1 The Uncertainty Principle

The uncertainty principle says that a function , mostly concentrated injx Xoj < «,
cannot also have its Fourier transform” mostly concentrated inj o < unless
X 1. Fe erman describes a sharper form of the uncertainty priziple, called the
SAK principle, which we will now describe. Assume that we are gn a self-adjoint
di erential operator

X
A(x;D) = - ma (X) @@x ; (3.1)
with symbol X
A(x; )= a (x)(i) : (3.2)

jjm

50



3.1. THE UNCERTAINTY PRINCIPLE 51

The SAK principle, which derives its name from the notation used by derman in
[10] to denote the set
S(AK) = f(x; )JA(K ) <K g; (3.3)

states that the number of eigenvalues & (x; D) that are less thanK is approximately
equal to the number of distorted unit cubes that can be packedisjointly inside the set
S(A; K). SinceA(x; D) is self-adjoint, the eigenfunctions oA(x; D) are orthogonal,
and therefore theSAK principle suggests that these eigenfunctions are conceated
in disjoint regions of phase space de ned by the setS(A; )] 2 (A)g.

As in previous chapters, we consider only di erential opetars de ned on the
space of 2-periodic functions. We therefore use a modi ed de nition 6 the set
S(AK),

S(AK) = f(x; )j0<x< 2 jA(X )i < jKjg: (3.4)

The absolute values are added because symbols of self-adjoperators are complex
when the leading coe cient is not constant.

In the case of a constant-coe cient operatorA(x; D), the setsS(A; K ) are simple
rectangles in phase space. This simple geometry of a constane cient symbol is il-
lustrated in Figure 3.1. The eigenfunctions aA(x; D), which are simply the functions
e (x) = exp(i x ), are concentrated in frequency, along the lines= constant. Figure

3.2 shows the volumes of the seS(A; ) for selected eigenvalues;, j =1;:::;32,
of A(x;D). The eigenvalues are obtained by computing the eigenvakief a matrix
of the form
xn
Ap = A D, (3.5)

operator. Note that in nearly all cases, the set di erences
S(A; j) S(A j )=F05 ) 4 ] A )I<] g (3.6)

have the area 2.



52 CHAPTER 3. PRECONDITIONING

Symbol of A(x,D)=D?-1

1000

800

| TH;H

““Q&%&\\Q&M MY

T T

T T Tt
I

\\\\\\\\\\\\

600

[AX)]

400

200

Figure 3.1: Symbol of a constant-coe cient operatoiA(x;D) = D? 1



3.1. THE UNCERTAINTY PRINCIPLE 53

Volume of S(A,l J.) for each eigenvalue | i constant-coefficient operator
200 T T T T T \

150 - N

)

VoI(S(A|
[
o
o
T
|

a1
o
T
|

~

)

e » w0l
T T T

| | |

VOI(S(A,l ))-Vol(S(A,l
N

[Eny
T
|

o

o
(3]

10 15 20 25 30 35
j

Figure 3.2: The volume of the setS(A; K ), as de ned in (3.4), whereA(x;D) =

D2 landK = (A)forj =1;:::;32. Thetop gure plots the volume ofS(A; ;) as

a function ofj , and the bottom gure plots the change in volume between coesutive

eigenvalues.



54 CHAPTER 3. PRECONDITIONING

Symbol of A(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)

1400 \\
S

1200 ‘ \\ \\§ Q

MR .
< 600 LN R

R TR,
R

200 N\ \\Q\

(UN

Figure 3.3: Symbol of a variable-coe cient operatorA(x;D) = D((1 + %sinx)D)
1+ Lsinx
2

Now, consider a variable-coe cient operatorA(x; D), with a symbol A(x; ) such
as the one illustrated in Figure 3.3. TheéSAK principle suggests that the eigenfunc-
tions of A(x; D) are concentrated in curved boxes of volume 1, where the geometry
of these boxes is determined by the se®A; K ). Corresponding to Figure 3.2, Fig-
ure 3.4 shows the volumes of the se§(A; ;) for the variable-coe cient operator
A(x;D) featured in Figure 3.3. As in the constant-coe cient casethe set dier-
encesS(A; j) S(A; ; 1) have approximate area 2. This ceases to be true for the
largest eigenvalues, but those eigenvalues are not good ap@mations to the actual
eigenvalues ofA(x; D) due to the limited resolution of the discretization.

These gures suggest that it is possible to construct a chaegof variable



3.1. THE UNCERTAINTY PRINCIPLE 55

250

I
|-l)) N
g 8

VoI(S(Al
[
o
o

50

20

[¢)]

I

VoI(S(A.l ))-VoI(S(A.l ., ))
o =

Volume of S(A,l J.) for each eigenvalue | i variable-coefficient operator

35

10 15 20 25 30 35
i

Figure 3.4. Volume of the setsS(A;K) where A(x;D) = D 1+ %sinx D

1+ %sinx and K =  forj = 1;:::;32. The top gure plots the volume of
S(A; ) as a function ofj, and the bottom gure plots the change in volume between
consecutive eigenvalues.



56 CHAPTER 3. PRECONDITIONING

(y; ) ! (x; ) in phase space in order to \bend"A(x; ) so that it more closely
resembles the symbol of a constant-coe cient operator. If preserves volume in
phase space, then the volume of each setA; K ) is invariant under , and therefore
an operator with the symbolA  should have approximately the same eigenvalues
asA(x; D). This leads us to ask whether such a transformation of the syool A(x; )
can induce a similarity transformation of the underlying oprator A(x; D).

3.2 Egorov's Theorem

Egorov answered this question in the a rmative (see [9], [1]0, in the case where
is a canonical transformation i.e. a change of variable in phase space that preserves
Poisson brackets:

fF;Gg = fF G g (3.7)

A consequence of this de nition is that canonical transfor@tions preserve volume in
phase space.
We consider a blockB in phase space that is the image under a canonical trans-

formation of a block B of sizeM = centered at {/o; o). Let i denote the
natural change of scala : (y; ) ! ((y VYo)=y;( 0)= ) that carries B to the
unit cube. is said to satisfy \natural estimates" if i i 2 C!, with derivatives

of all orders bounded independent d¥1. Furthermore, we say that a symbolA(x; )
belongs toS™ if

j@@A] C (@+jphm 0; (3.8)
where the constantsC are independent ok and .

Theorem 3.1 (Egorov) Let be a canonical transformation satisfying natural
estimates and carryingB into its double B . Let A(x; ) 2 S™ be a symbol supported
in ( B)and dene A(y; )= A (y; ). Then the operatorsA(x;D) and A(y; D)
are related by

A(y;D) = UA(x;D)U !+ lower-order terms (3.9)

for a suitable unitary transformation U.



3.3. SYMBOLIC CALCULUS 57

For \most" (see [10], [9]), the operator U is given explicitly as a Fourier integral
operator 7
Uf(y)= ey; )eS¥If()d; e2s% s28h (3.10)

where the functionS is related to by

fly; ;5% Ji(y; )=(x; )g= » X = » Xk = (311
(y iy )=(x)9= (y )« ay @ (3.11)
The function S(y; ) is called agenerating function for the transformation . In
the case of a canonical transformation induced by a change \@riabley = (x),
S(y; ) = Y(y) and the factor e(y; ) = jdetD ! ¥*? is added to makeU

unitary, and therefore Uf (y) = jdetD  (y)j 7(f H(y).

It should be noted that while Egorov's theorem applies to opators supported
in a curved box in phase space, it applies to general di ereiat operators when the
canonical transformation arises from a change of variablg = (x), provided that

satis es the natural estimates required by the theorem.

Our goal is to construct unitary similarity transformations that will have the e ect
of smoothing the coe cients of a variable-coe cient operabr A(x; D). In the spirit
of Egorov's theorem, we will construct such transformatianby acting on the symbol
A(X; ).

3.3 Symbolic Calculus

We will frequently rely on the rules ofsymbolic calculusto work with pseudodif-
ferential operators (see [29], [31]), od O, more easily and thus perform similarity
transformations of such operators with much less computatnal e ort than would

be required if we were to apply transformations that acted omatrices representing
discretizations of these operators.



58 CHAPTER 3. PRECONDITIONING

3.3.1 Basic Rules of Symbolic Calculus

We will be constructing and applying unitary similarity transformations of the form
C(x;D)= U L(x;D)U (3.12)

whereU is a Fourier integral operator, and, in some cases, d 0. In such cases, it is
necessary to be able to compute the adjoint of @ 0, as well as the product ofd O.
To that end, given a dierential operator A(x;D), the symbol of the adjoint
A (x;D) is given by
X 10 @-—

A )= —!@@—A(x; ); (3.13)

while the symbol of the product of two di erential operatorsA(x; D )B(x; D), denoted
by AB (x; ), is given by

X 1@A@B
AB (X, )= —!%%: (3.14)

These rules are direct consequences of the product rule foredentiation.
Some useful facts about di erential operators are easily keed using the above
rules:

1. Operators of even order are symmetric modulo lower-ord&rms.
2. Operators of odd order are skew-symmetric modulo lowerder terms.
3. All operators are normal modulo lower-order terms.

4. All operators commute modulo lower-order terms; speciadly, if A is of order
m and B is of ordern, then AB  BA is of orderm+ n 1.

5. The symbol of the product of two constant-coe cient di erential operators is
the product of the symbols.

6. The symbol of the adjoint of a constant-coe cient di erential operator is the
complex conjugate of the symbol.



3.3. SYMBOLIC CALCULUS 59

We will see that by using integration by parts, we can geneliae the abovemen-
tioned rules to certain symbols of negative order.

3.3.2 The Pseudo-Inverse of the Di erentiation Operator

For general d O, the rules (3.13), (3.14) do not always apply, but they do gid an
approximation. However, it will be necessary for us to work #h d O of negative
order, so we must identify a class of negative-orded O for which these rules do
apply.

Let A be anm n matrix of rank r, and let A = U VT be the singular value
decomposition ofA, whereUTU = I,,, VTV = I, and =diag( 1;:::; ;0;:::;0).
Then, the pseudo-inversdsee [21]) ofA is de ned as

A" =V *UT; (3.15)

where then m diagonal matrix * is given by

= ' : (3.16)

0

We can generalize this concept to de ne the pseudo-inversé the di erentiation
operator D on the space of 2-periodic functions by

1 X z 60
DY u(x)= p— éx @()ra(); zt = : 3.17
(X) 97!:1 (it ) ac) 0 7-0 (3.17)

The rules (3.13) and (3.14) can be used for pseudodi erentiaperators de ned using
D*.



60 CHAPTER 3. PRECONDITIONING

Proposition 3.1 The rules (3.13) and (3.14) hold for pseudodi erential opators of
the form

%
A(x;D)=  a (x)(D") ; (3.18)

=0

at all points (x; ) in phase space provided that 6 O.

Proof We will rst prove that (3.14) holds, and then use this resultto prove that
(3.13) holds as well. To verify (3.14), it is su cient to showthat it holds for the case

A(x;D)=(D*)); B(x;D)= hXx); (3.19)

because

pre-multiplying an operator L(x; D) by a coe cient pre-multiplies the symbol
L(x; ) by the same coe cient, and

post-multiplying an operator L(x; D) by D, if all coe cients are of nonnegative
order, or byD ™", if all coe cients are of nonpositive order, multiplies thesymbol
L(x; )by i inthe rstcase and (i )* in the second.

We now prove that (3.14) holds for the case (3.19) by inductio Settingj = 1 in
(3.19), we use integration by parts to obtain

A(x;D)B(x;D) D" b(x)
db +1 +
(DG

X o1 db
- IM+1 1 -~
. (1) D] i

X 1 @A@B

@ @x’

=0

that it holds for j = k+ 1. We let

A(x;:D)= R(x;D)S(x;D); R(x;D)= D*; S(x;D)=(D"): (3.20)



3.3. SYMBOLIC CALCULUS 61

By the induction hypothesis,

SB(x; )

1 0b@s. (3.21)

Using the result

(k+1+ ); (3.22)

we obtain
AB(Xx; ) RSB(x; )

* 1. db@s

- ! dx @

* X dbes

o ' s dx* @

XX d*bY .
(1" w K+ )M

=0 =0 ! " j=0 "

b3 Y
LG I (S P (DX S
=0 i =0

X 1 @RS@B

Il @ @x’

(i)

=0

and the induction step is complete.

To show that (3.13) holds, it is su cient to note that [(D*)X] = ( 1)X(D*),
and use induction to prove that (3.13) applies to operatorsfahe form Ay(x;D) =
a(x)[D*]¥. The base case df = 1 follows directly from repeated integration by parts.
For k > 1, we have, using (3.22),

Ax; ) = RA (%)



62 CHAPTER 3. PRECONDITIONING

#
_* 1@rR@ * 1@ @A
L, '@ @x _ '@ @x
_* X 11@R @ @ A
L L 1@ e ex
_* 1@ @A,
T, '@ ex’

and the proof is complete.2
This result allows us to e ciently construct and apply unitary similarity transforma-

tions based ond O of the form
s
U(x;D) = a (x)[D"] : (3.23)

=0

Such transformations will be considered in Section 3.5.

3.4 Local Preconditioning

A special case that is useful for practical computation is vére arises from a simple
change of variabley = (x), where (x) is a di erentiable function and

1 Z 2
Ix) > O; > As)ds=1: (3.24)
0
The transformation has the form
(y; )0 (% ) x= My = ) (3.25)

In this case, we seg(y; )= jdetD (y)j*?andS(y; )= (y) , and the Fourier
inversion formula yieldsUf (y) = jdetD  (y)j*?f L(y).

Suppose thatL (x; D) is an m-th order di erential operator such that the leading
coe cient an, (x) does not change sign. Using this simple canonical transfeation, we
can precondition a di erential operatorL (x; D) as follows: Choose (x) and construct



3.4. LOCAL PRECONDITIONING 63

a canonical transformation (y; ) by (3.25) so that the transformed symbol

Cly; )=Les ) (y;)=L( "y C ') (3.26)

resembles a constant-coe cient symbol as closely as podsilfor a xed frequency
o in transformed phase space. This will yield a symbdt(y; ) that is smooth in a

region of phase space concentrated around= . Then, we can select another value
for o and repeat, until our symbol is su ciently smooth in the region of phase space
f(y; )i 1 <N=2g.

Since we are using a canonical transformation based on a charof spatial variable
y = (x), we can conclude by Egorov's theorem that there exists a uary Fourier
integral operator U such that if A = U LU, then the symbol of A agrees withC
modulo lower-order errors. Using the chain rule and symbolicalculus, it is a simple
matter to construct this new operatorA(y; D).

We will now illustrate the process for a second-order seléint operator

L(x;D) = a(x)D?+ a3(x)D + ag(x); (3.27)

with symbol
LG )= @(x) 2+ a(x)i + ao(x): (3.28)

We will attempt to smooth out this symbol in a region of phase gace concentrated
around theline = 4. Ourgoalisto choose (x) so that the canonical transformation
(3.25) yields a symboL(y; ) satisfying C(y; o) is independent ofy. In this case, the
expressionL(  (y); 4 *(y)) o) would also be independent of, and therefore we
can reduce the problem to that of choosing so that L(x; qx) o) is independent of
X. The result is, for eachx, a polynomial equation in (x),

a2(x) (%)% §+ iaz(x) %) o+ @0(x) = L o; (3.29)

where the constantL , is independent ofx. This equation cannot be solved exactly,
but we can try to solve it approximately in some sense. For erRgle, we can choose
a real constantL ,, perhaps as the average value af(x; o) over the interval [G;2 ],



64 CHAPTER 3. PRECONDITIONING

and then choose (x) in order to satisfy
ax(x) 1x)? 2+ ap(x) = L, (3.30)

at each gridpoint, which yields

Avga, ag(X) Avgag,
a0) | @) 2 (3:31)

where the constantc , is added to ensure that Avg = 1. Figures 3.5 and 3.6
illustrate the e ect of this technique of local preconditiming on the symbol of the
operator

1 . 1
L(x;D)=D 1+§smx D 1 écos?k ; (3.32)

rst on regions of phase space corresponding to lower frequuges, and then regions
corresponding to higher frequencies. We make the followidpservations:

It is not necessary to apply local preconditioning to everyréquency, because
transformations applied to lower frequencies have far-relaing e ects on the

symbol, thus requiring less work to be done at higher frequeies. These far-
reaching e ects are due to the smoothing of the leading coeient.

As (!1 ,thetransformation ( y; ) converges to the unique canonical trans-
formation of the form (3.25) that makes the leading coe cieh of L(x;D) con-
stant, and convergence is linear in,*. A variation of this transformation is
used by Guidotti and Solna in [26] to obtain approximate higkirequency eigen-
functions of a second-order operator.

3.5 Global Preconditioning

It is natural to ask whether it is possible to construct a uniary transformation U
that smooths L(x; D) globally, i.e. yield the decomposition

ULKXD)U=rC(): (3.33)



3.5. GLOBAL PRECONDITIONING

ILCy.h)l

Figure 3.5: Local preconditioning applied to operatoL (x; D) with

120

100

80

60

40

20

Symbol of locally preconditioned operator L(y,h) (h0:4)

65

\/\_/

—

new operatorL (y; D).

o = 4 to obtain



66 CHAPTER 3. PRECONDITIONING

Symbol of locally preconditioned operator L(y,h) (ho=16)
120 T \ T

100 - T

80 N

L X 1

ILCyh)l

40r -

20 T

Figure 3.6: Local preconditioning applied to operatot. (y; D) from Figure 3.5, with
0- 16.



3.5. GLOBAL PRECONDITIONING 67

In this section, we will attempt to answer this question. We bgin by examining
a simple eigenvalue problem, and then attempt to generalizBe solution technique
employed.

Consider a rst-order di erential operator of the form
L(x;D) = aD + ay(x); (3.34)
where ag(x) is a 2 -periodic function. We will solve the eigenvalue problem
L(x;D)u(x)= u(x); 0<x< 2; (3.35)
with periodic boundary conditions
ux)=u(x+2 ); 1 <x< 1: (3.36)
This eigenvalue problem is a rst-order linear di erential equation
aux) + a(x)u(x) = u (x); (3.37)

whose general solution can be obtained by using an integnagi factor

Z
X ag(s)
0 =5l

(X) = exp ds : (3.38)
Multiplying through (3.37) by ' (x) and applying the product rule for di erentiation
yields

4=

where C is an arbitrary constant. The periodic boundary conditionscan be used

(3.39)

to determine the eigenvalues oL (x; D). Specically, an eigenfunctionu (x) must
satisfyu (0) = u (2 ), which yields the condition

£2 ao(s)

ds=i2k; (3.40)
0 a



68 CHAPTER 3. PRECONDITIONING

for some integerk. If we denote by Avga, the average value ofy(x) on the interval

1 2
Avg g = 5 ap(s) ds; (3.41)
0

then the periodicity of u (x) yields the discrete spectrum of.(x; D),
k = Avg ag + iak; (3.42)

for all integersk, with corresponding eigenfunctions

Z
*Avgap ao(s)

uk(x) = exp ds+ ikx (3.43)
0 a1
Let VAN
v zexp 9% ()4 . (3.44)
0 a
Then uk(x) = v(x)e¥ and
[V(x)] L(x;D)v(x)e® = & (3.45)

We have succeeded in diagonalizing(x; D) by using the zeroth-order symbolv(x)
to perform a similarity transformation of L (x; D) into a constant-coe cient operator

C(x;D) =[v(X)] L(x;D)v(x) = a1D + Avg ay: (3.46)

The same technique can be used to transform anth-order di erential operator of
the form
) ¢ 1
L(x;D)= a,D™ + a (x)D ; (3.47)
=0

so that the constant coe cient a, is unchanged and the coe cienta,, 1(x) is trans-
formed into a constant equal toes; 1 = Avg a,, 1: This is accomplished by computing
C(X;D) =[Vm(X)] L(X;D)vn(X) where

Z
“Avgam 1 am 1(8)OIS .

Vm(X) = eX
m(X) p . man

(3.48)



3.5. GLOBAL PRECONDITIONING 69

Note that if m = 1, then we havev;(x) = v(x), wherev(x) is de ned in (3.44).
We now seek to generalize this technique in order to elimiratower-order variable
coe cients. The basic idea is to construct a transformationd such that

1. U is unitary,

2. The transformation C(x;D) = U L(x;D)U vyields an operatorC(x;D) =

moa(x) @@X such that a (x) is constant, and

3. The coecients b (x) of L(x; D), where > | are invariant under the similarity
transformationC= U L(x;D)U .

It turns out that such an operator is not di cult to construct . First, we note that if
(x; D) is a skew-symmetric pseudodi erential operator, thetd(x; D) = exp[ (x;D)]
iS a unitary operator, since

U(x;D) U(x;D) =(exp[ (x;D)]) exp[ (x;D)]=exp[ (x;D)lexp[ (x;D)]= I

(3.49)
We consider an example to illustrate how one can determine @erator (x;D) so
that U(x;D) = exp[ (x;D)] satis es the second and third conditions given above.
Given a second-order self-adjoint operator of the form (32, we know that we can
use a canonical transformation to make the leading-order e@ient constant, and
since the corresponding Fourier integral operator is unitg, symmetry is preserved,
and therefore our transformed operator has the form

L(x;D) = a,D?+ ag(X): (3.50)

In an e ort to transform L so that the zeroth-order coe cient is constant, we apply
the similarity transformation C = U LU, which yields an operator of the form

C = (I + 22 )Ll + +%2+ )

NI =

(1 (x,D)+§2(x,D) YL+ L +§|_2+ )

1
L+L + =L 2
2



70 CHAPTER 3. PRECONDITIONING

1
L L L %+

2
12 12 12 2
L+ 2L o+ L %+
2 2 4

= L+(L L)+
(AR (R

ML) (L )I+g %

Since we want the rst and second-order coe cients of. to remain unchanged, the
perturbation E of L in C = L + E must not have order greater than zero. If we
require that has negative order k, then the highest-order term inE is L L,
which has order 1 k, so in order to a ect the zero-order coe cient of L we must
have be of order 1. By symbolic calculus, it is easy to determine that the higbst-
order coe cient of L L is 2a,0P,(x) whereb 1(x) is the leading coe cient of
Therefore, in order to satisfy

ag(x) + 2 a1 ,(x) = constant; (3.51)
we must havelP [(x) = (ap(X) Avgag)=2a,. In other words,

b 1(x) = 2—;D+(ao(x»; (3.52)

whereD ™ is the pseudo-inverse of the di erentiation operatob introduced in Section
3.3. Therefore, for our operator (x; D), we can use

(x;D) = %[b 1(X)DT (b 1(X)D™) ]= b 1(x)D* + lower-order terms.  (3.53)

Using symbolic calculus, it can be shown that the coe cient border 1 in [ is zero.
We can use similar transformations to make lower-order coeients constant as well.
In doing so, the following result is helpful:



3.5. GLOBAL PRECONDITIONING 71

Proposition 3.2 Let L(x;D) be anm-th order self-adjoint pseudodi erential oper-
ator of the form

X ps
L(x;D) = a (x)D + a (x)[D] : (3.54)

=0 =0
where the coe cientsfa (x)g are all real. For any odd integer o, if a (x) is constant
forall > o, thena (x) O.

Proof SincelL(x;D) is self-adjoint, we have, by (3.13),

X 1 @@L
L(x; )= — (3.55)
L, '@ @

Because ( is odd, this implies thata ,(x) = ca ,(x) for some constantc > 0, from
which the result follows immediately. 2

Example Let L(x;D)= D?+sinx. Let
1
b 1(x)= écosx (3.56)
and

1 1
(x;D) = Z[cosxD* (cosxD™) | = écosx(x)D+ + lower-order terms.  (3.57)

Then, since Avg sirx = 0, it follows that

C(x;D) = UL(KXD)U
= exp[  (xD)IL(x;D)exp[ (x;D)]
= D?+ E(x;D);
whereE(x;D) is of order 2. 2



72 CHAPTER 3. PRECONDITIONING

3.5.1 Non-Normal Operators

If the operator L(x;D) is not normal, then it is not unitarily diagonalizable, and
therefore cannot be approximately diagonalized using umity transformations. In-
stead, we can use similarity transformations of the form

Cx;D)=exp[ (x;D)IL(x;D)exp[ (x;D)]; (3.58)

where (x) is obtained in the same way as for self-adjoint operatorsxeept that we
do not take its skew-symmetric part. For example, it (x;D) = a,D?+ a;D + ap(X),
then we can make the zeroth-order coe cient ofC(x; D) constant by setting

()= b1(x)D* = D" (@(x)D"*: (3.59)
2

3.6 Summary

We have succeeded in constructing unitary similarity trarfermations that smooth the
coe cients of a self-adjoint di erential operator locally in phase space so that the sym-
bol of the transformed operator more closely resembles that a constant-coe cient
operator. In addition, we have shown how unitary similaritytransformations can be
used to eliminate variable coe cients of arbitrary order, d the expense of introduc-
ing lower-order variable coe cients. In Chapter 5 we will se that these techniques
for smoothing coe cients will improve the accuracy of the Kylov subspace methods
developed in Chapter 2. Furthermore, it will be seen that thee transformations can
yield good approximations of eigenvalues and eigenfunat®of self-adjoint di erential
operators.



Chapter 4
Implementation

In this chapter we will show how the algorithm developed dung the previous two
chapters can be implemented e ciently.

4.1 Symbolic Lanczos Iteration

Consider the basic process developed in Chapter 2 for comimgt the Fourier coe -
cients oft"*! from u":

for ! = N=2+1;:::;N=2 1
Choose a scaling constant,
us; = é!—' S( t)él

using the symmetric Lanczos algorithm
u, = &S t)(& + ,u"
using the unsymmetric Lanczos algorithm
"] =( ) Y(uz  ug)
end

Clearly, this algorithm is much too slow to be used as a timeepping scheme, because
at least O(N?logN) operations are required to carry out the symmetric Lanczos
iteration 2N 2 times. Fortunately, we can take advantage of the symboliatculus
discussed in the previous chapter to overcome this problem.

73



74 CHAPTER 4. IMPLEMENTATION

Let T(! ) be the Jacobi matrix created by the symmetric Lanczos iteteon with
starting vector &, . The basic idea is to use symbolic calculus to create a repeatation
of the nonzero elements of (! ) as a function of! . Consider the symmetric Lanczos
iteration applied to a general matrix A with starting vector r:

Chooserg
0=1
Xo=0
for j=1;::5k
Xp=Tj 151
i = x[TAx;
r=(A i1)X i 1Xj o1
2=,

It would be desirable to re-use as much computational e ort@possible in applying
this algorithm for each frequency . To that end, we will now carry out this iteration
for a given operatorL (x; D) and variable frequency! and compute elements of (! ),
represented as functions df , in order to determine how much re-use is possible.

4.1.1 A Simple Example

Consider a second-order self-adjoint di erential operatoof the form
L(x;D) = ayD?+ ay(x); (4.1)

with symbol
L(x; )= a 2+ ag(X): (4.2)

We will now apply the symmetric Lanczos iteration to this opeator with starting
function & (x), where & (x) was de ned in (1.13), and examine how ;, ; and -



4.1. SYMBOLIC LANCZOS ITERATION 75

can be computed as e ciently as possible. We have

he L(x;D)& i
a,! 2+ Avg ag:

N
I

Proceeding to ;, we have

2 = KL(:D) )8k
kag(X)k* j Avg agj*:

Finally, for , we lethb(x) = (ap(x) Avgag)= ; and obtain

Ho& ;L(x;D)b& iy

N
1

= bﬁ:az% h+fbe;aobeih

= a bég;dzélﬁ) h + o, abin

= a be_;;%)e h+2 ba ; (i! )%’6 - ba ; (it )?08 | + hb;aphiy
= a b;;% h+2 b; (it )%3 o bi(it )?b, + hb;ahip

= a %)dd—l)? h+2i! b;%) h 12 + ho;gbip,

a! 2 k k2 + hb; ahiy,

We see that, so far, the entries of the tridiagonal matrix castructed by the Lanczos
iteration are polynomials in! . While this does not hold in general, the entries can still
be represented as functions df. Therefore, we can construct the&K -point Gaussian
quadrature rules for all frequencie$ = N=2+1;:::;N=2 1 by rst constructing
representations for the elements;, j = 1;:::;K, and ;,j =1;:::;K 1, as
functions of ! , and then evaluating these representations for ea¢h By computing
a representation of ¢ as well, we can obtairK -point Gauss-Radau rules.



76 CHAPTER 4. IMPLEMENTATION

4.2 An Abstract Data Type for Lanczos Vectors

We now describe an abstract data type (ADT) that can be used te ciently compute
and represent Lanczos vectors corresponding to &l 1 Fourier components simul-
taneously, as well as the elements of the corresponding Jacmatrices, as functions
of the frequency! .

4.2.1 Data Structure

The data contained in this type is a representation of a funain of the form

xn X0 _
fal) = G+ d(!)ax)e” : (4.3)

ji=1 k=1

Speci cally, a function f (x;! ) is de ned by four ordered collections:

fe = fHR(X); R (X)g; (4.4)
fo = ffe()nfd()a; (4.5)
fo = FER(X);f5000; (4.6)
fo = ffa();iinfs()g (4.7)

We denote the sizes of these collections piyj, jfcj, jf =], and jf »j, respectively. For
each such collection, we use a superscript to denote a singlement. For example,
f 2 corresponds tof 5(x) in (4.3).

Given an N-point grid of the form (2.42), with uniform spacingh =2 =N, a
function f (x;! ) can be represented using matricés:, Fc, Fg, Fs, de ned as follows:

Fe = ! fi f I ;o om=jfej; [fLlc= fL(kh); (4.8)
Fc = A fl fo il o om=jfe; [file=fi(k  N=2); (4.9)
Fe o= fa M k= fels [felc = FL(kh); (4.10)
Fe = 1} fk 5 k=jfe; [flilc= Fi(k N=2): (4.11)



4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS 77

4.2.2 Operations

This ADT supports the following operations:

Addition and subtraction: The sum of two functionsf (x;!) and g(x;!) is

represented by the function
h(x;!')=f(x!) ox;!); (4.12)
which has valuesh(x;!) = f(x;!)+ g(x;! ). The operation can be imple-

mented as follows:

n=jfgj
He = Fe
He = Fc
T=1
for j =1;:::]0]
found =0
for k=1;:::;jfg]
if khk gtk < tol
hg = he + gc
found =1
break
end
end
if found =0
he* =g
he = gc
CZ 41
end
end

n=jfgj



78 CHAPTER 4. IMPLEMENTATION

Hr_Az F,e

Hé: Fé

for j =1;::17]0e)
found =0

if khk glk <tol

hi = h + gj(,j
found =1
break
end
end
if found =0
h =g
he™ = g
241
end
end

Similarly, the di erence of two functions f (x;! ) and g(x;! ) is represented by

the function
h(x;1)=1F0G1)  g(x;!) (4.13)

which has valuesh(x;!) = f(x;!') g(x;!). The implementation of sim-
ply negates the coe cients ofg(x;! ) and then performs the same underlying

operations as :

n=jfe]
He = F¢
Hc = Fc

=1

for j =1;:::;)0F]



4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS

found =0

if khk gLk <tol
h& = hg ot
found =1
break
end
end
if found =0
hp' = gk
he = gt
Co 1
end
end

if kh gLk <tol
hg =ht g,
found =1
break
end
end
if found =0
he™ =g
he' = g
241

end



80

CHAPTER 4. IMPLEMENTATION

end

In the worst case, wherdfrg= fgegandff.g= fgeg, (jfej+jgej)N oating-
point operations are required for both and . Inany case, [frj+joej+ jf oj+
jg2j)N data movements and/or oating-point operations are needed

While it is not absolutely necessary to check whether the fation collections
for f and g have any elements in common, it is highly recommended, since
applying di erential operators to these representations an cause the sizes of
these collections to grow rapidly, and therefore it is wiseottake steps to o set
this growth wherever possible.

Scalar multiplication: Given a function f (x;! ) and an expressions(! ), the
operation g(x;!) = s(!) f(x;!) scales each of the coe cients off (x;!)
by s(!), yielding the result g(x;! ) which is a function with valuesg(x;!) =
s(! )f (x;!). The operation can be implemented as follows:

Gr = F¢

for j =1;:::;jfcj
g = sfL

end

Gpe = Fp

for j =1;:::;jfa)
Qe = sfe

end

This implementation requires (fcj + jf aj)N oating-point operations.

Application of di erential operator: The operation g(x;! )= L(x;D) " f(x;!)
computes a representatiom(x;! ) of the result of applying themth-order di er-
ential operator L(x;D) to f (x;!) satisfying g(x;! ) = L(x;D)f (x;!) for each
I'. The following implementation makes use of the rule (3.14)In describing



4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS 81

the implementation, we do not assume a particular discretiion of L(x;D) or
the functions in the collectionsf ¢ or f »; this issue will be discussed later in this

section.
o = fc
for j =1;:::;jfF]
g (x) = L(x;D)fL(x)
end

This implementation requiresNm (1+ jf 2j)+ jf (DM (m+1) =2+ M (m+1)(m+
2)=2)+ jfgj(Dm + M (m+1)) oating-point operations, where D is the number
of operations required for di erentiation and M is the number of operations
required for pointwise multiplication of two functions. Onan N -point uniform
grid, M = N andD =2N logN + N, provided that N is also a power of 2.

Inner product: The operationh(! ) = f(x;!) g(x;!) computes a representa-

tion of the inner product of f (x;! ) and g(x;! ), resulting in an expressiorh(! )

with valuesh (;!);g( ;! )i. The following algorithm can be used to implement
. As usual, T represents the discrete Fourier transform operator.



82 CHAPTER 4. IMPLEMENTATION

h=h+(flg%) (fL17gk)
end

0= T[fLg]
h=h+ (fg':gg)ﬁp 2=h
end

= TIfhgE]

h=h+(flg&)0 2=h
end

h=h+(flo5) (fL]"g%)
end
end

The above implementation requires 8 (jfcjjocj + jf¢jjgej) + (N logN +4N +
1)(jfcjide) + if ajigcj) oating-point operations.

This set of operations is su cient to carry out the Lanczos ieration symbolically
given two functions as initial Lanczos vectors. The resultfdhe iteration is the set of
all Jacobi matrices for all wave numbers = N=2+1;:::;N=2 1.

4.3 Construction of Approximate Solutions

In this section we will present a full implementation of Algathms 2.2 and 2.3 and
analyze the time and space complexity required. To simplifthe discussion, we will
make the following assumptions:

1. L(x; D) is a second-order self-adjoint operator of the form

L(x;D) = aD?+ ag(X): (4.14)



4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 83

2. K, the number of Gaussian quadrature nodes, is equal to 2, whits generally
su cient.

3. L(x; D) and the initial data f (x) are discretized on anN -point uniform grid of
the form (2.42).

4.3.1 Computation of Jacobi Matrices

For each frequency! , Algorithm 2.2 computes two 2 2 Jacobi matrices in order
to approximate the quantitesD, = e'Sy( t)e, and F" = el'Sy( t)(ey + uM):

Clearly, D, need only be computed once, whilE” must be recomputed at each time
step. The computation of the Jacobi matrixJ, used to obtainD, proceeds as follows:

[role =1
[role =1
c2>: fro Tro

X1 =To 0

Li=L"AXq

1= X1 Li
ri=L;s (1 X
2=r1 71

Lo=L"X,

X2 L,

N
1

In an e cient implementation that recognizes that the initi al function x has a constant

coe cient, a total of 38N + 6N logN 6 oating-point operations are required.

E ciency can be improved by applying standard optimization techniques such as

common subexpression elimination (see [1] for details). Fexample, on an operator

of the form (4.14), the entries of], , in the case ofK = 2, can be computed in only

13N + N logN 1 oating-point operations using the representations of ;, ; and
> derived in Section 4.1.1.



84 CHAPTER 4. IMPLEMENTATION

4.3.2 Updating of Jacobi Matrices

The operations described in the previous section can be usedcarry out the sym-
metric Lanczos iteration with starting vector&, simultaneously forall! ,! = N=2+

with starting vectors & and & + f, wheref is a given vector and , a constant
depending on! , there is a more e cient alternative, which we describe in tls section.

Let A be a symmetric positive de niten n matrix and let ro be ann-vector.
Suppose that we have already carried out the symmetric Lanaz iteration given in
Section 4.1,

Xo=0
0 = krokz
for j =1;::5k
Xp=T1j1=j1
i = x[TAx;
r=_(A i )X i 1% 1
7= krjks
end
to obtain orthogonal vectorsry;:::;r¢ and the Jacobi matrix
2 3
1 1
1 2 2
Jy = : (4.15)

along with the value .



4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 85

Now, we wish to compute the entries of the modi ed Jacobi maix
2 3
N

R = . (4.16)

along with the value ", that result from applying the unsymmetric Lanczos iteratbn
with the same matrix A and the initial vectors ro and ro + f, wheref is a given
perturbation. The following iteration produces these valas.

Algorithm 4.1  Given the Jacobi matrix (4.15), the rst k+1 unnormalized Lanczos

generates the modi ed Jacobi matrix (4.16) that is producedy the unsymmetric
Lanczos iteration with left initial vector ro and right initial vector ro + f, along with

the value *.

NE sl atd g ooy Y
d=(d 1 24(; "D
a =(A "D 1 Ajzlqj 2

Tt fts g

- e
Sj = 7S 1
]



86 CHAPTER 4. IMPLEMENTATION

We now prove the correctness of this algorithm.

Theorem 4.1 Let A be ann n symmetric positive de nite matrix and ro be an
n-vector. Let Jx be the Jacobi matrix obtained by applying the symmetric Lanzos
iteration to A with initial vector ry, i.e.

ARk = RxJk + «rk; (417)

h [
where Rk = g re« 1 - Then Algorithm 4.1 computes the entries of the

modi ed Jacobi matrix Jx obtained by applying the unsymmetric Lanczos iteration
to A with left initial vector rq and right initial vector rq + f, along with the value

N
K = [J\K+1]K:K +1 -

Proof It is su cient to verify the correctness of the recurrence réations
N .
Z=t 1 +s arfg; j 0 0s 1=0; (4.18)
and

NS g it dg g ot Y2 L 9="0=0; (4.19)

whered, is as de ned in Algorithm 4.1. Consider the unsymmetric Larwos iteration

R0=0

$0=0

Aozzﬁo’f\o

for j =1;:::;k
Rj =1 1:AJ'_1
% = B 1—/\j 1



4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 87

AN

f\j :(A Aj|)kj j 1kj 1
i =(A )Y a9
l\ —
j2 - ijf\j

end

wherefy = ro+ f and po = ro. Clearly,
Tarlro+rlf= 2+rlit= 2+r5qo (4.20)

Letj 1. To verify the recurrence relations for M and "J?, we must use the relations

pi = (A ~NDY N
1
= +— (A NPy 1t
i1
1 1
= A—A(G 1 1+ 41 2) NG afj 17
i1 i1
_ j 1 i 2 AG 1
= G A+ X))+ d 1x—r 1 NA—r1t
j 1 " j 1 #j 1
= gt () AL d Al e
j 1 i1 j 1
= grp+dr i+
and
fo= (A MNDR T R
1 N
= (A NDfj 1 A5 g o+
i1 i 2
1 1,
= +—A(G irj 1+ di arj o+ f; 10, 1) F—"(G irj 1+ T 10; 1)
j 1 i1
N
i 1
~—Tfj 20 2+
i 2

i1 G a1 _ i 2. AG 1
G in—Ti*t ja—Tj 1+dJ 1A Tja ia— T 1t
i1 i1 i1 i1



88 CHAPTER 4. IMPLEMENTATION

" #
fj 1 fj 2Ajzl
A (A NN FA q 2
T, J i 2#
= gr+ () NALrd Al g
i1 i1

Grj + dirj 1+ 05+

wheredy =0 and ¢ = 1. It follows that

N2

,- SIY
gri'[gr; +fq;]
¢ 2+ gfjr'q;

2 H .
tj 1j+sj 1rj qg;j:

and

Aj - 9JH Akl
1
= Tp}* AR

j 1
1
Y el CEELIRE R L T Af 4

1n " 0]
- H
= x— Goaljar+ gl fyatdag ooy afy

_ H 2 H
= &G 1 g oafy oot (G o oty ary g ) ¢

1 .
- ) ' H ) ) ! HA~. I 24 H a
= ot =S 2l 105 1 j+S g 1t % doary ofy 1
j 1 i1
= 1 t: 24 H ) 4 S Hq. + j 2d. H P
= A G tS oAy aln S afjp oot 50l afy o
i1 i1
= . ' HA. i 24 H a
= TS Qo 1t A d; 1l A1
i1



4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 89

j 20 1,
G 1

= . . Hag.
- J+S] lrjqj 1t

2

It should be noted that this iteration produces the updated dcobi matrix with less
information than is required by the modi ed Chebyshev algathm described in [12],
[38], which employsnodi ed moments The modi ed Chebyshev algorithm is designed
for an arbitrary modi cation of the measure ( ) of the underlying integral (2.10).
By exploiting our knowledge of the speci c modication of ( ), we are able to
develop a more e cient algorithm. The basic idea is similar & that of an algorithm
described by Golub and Gutknecht in [17] that also overcomebe need for extra
information required by the modied Chebyshev algorithm. The main di erence
between Algorithm 4.1 and the algorithm from [17] is that Algrithm 4.1 computes
the elements offx directly from those of J«, instead of computing the necessary
modi ed moments as an intermediate step.

The computation of the Jacobi matrixJ,., used to obtainF," proceeds as follows:

VAN
g: 0+r0 f
50:,\—(2)
9
tozA—g
0
M= gt s(rs f)
U (M f)
N
2=tg 2+ so(r1 @)
S1 = =350
1

No= ot si(ry @)+ (1 M)

Under the same assumptions on the implementation as for thgmsmetric case, a
total of 55N + 19N logN oating-point operations are required. Nearly half of thes
operations occur in the nal step, which is the computation ”,. It should be noted
that r, must be computed, but this task need only be performed oncegther than
at each time step.



CHAPTER 4. IMPLEMENTATION

4.3.3 Obtaining and Using Quadrature Rules

Once we have obtained all of the required Jacobi matrices,mputing u"** consists

of the following operations:

1. The eigenvalues and eigenvectors of each Jacobi matrix shbbe computed. In

the 2 2 case, computing the eigenvalues requires one addition tontpute
the trace, two multiplications and an addition to compute the determinant,
two multiplications and one addition to compute the discrinnant, and one
square root, two additions, and two multiplications to obtan the roots of the
characteristic polynomial.

Once the eigenvalues are obtained, the non-normalized eigectors can be com-
puted in one addition when the Jacobi matrix is symmetric, otwo if it is non-
symmetric. Normalization of each eigenvector requires fomultiplications, one
addition, and a square root. In summary, the operation counfor the sym-
metric case is 14 multiplications, 8 additions, and three s@re roots in the
symmetric case, and 14 multiplications, 9 additions, and tiee square roots in
the unsymmetric case.

. For each Jacobi matrixJ, the quantity e] exp[ J t]e; needs to be computed.
If J is symmetric, this requires four multiplications, two expaentiations, and
two additions. If J is unsymmetric, an additional two multiplications and one
addition is required.

. Each approximate integralu™ exp[ L t]v, whereu 6 v, needs to be scaled by
the normalization constantb = hu"v. In the symmetric caseu = v, u and v
are chosen so thab= 1.

. One subtraction and one multiplication is then requiredd obtain each Fourier
coe cient of u"*?t,

. Having computed all Fourier coe cients, an inverse FFT isneeded to obtain
un*t,



4.4. PRECONDITIONING 91

In all, the operation count required to computeu™*!, once all Jacobi matrices have
been computed, is 78 + N logN, assuming square roots and exponentiations each
count as one operation. However, 38 of these operations only need to be carried
out once, since the symmetric Jacobi matrices are indepemtl@f the solution.

4.4 Preconditioning

The rules for symbolic calculus introduced in Section 3.3 saeasily be implemented
and provide a foundation for algorithms to perform unitary snilarity transformations
on pseudodi erential operators. In this section we will desop practical implemen-
tations of the local and global preconditioning techniquediscussed in Chapter 3.

4.4.1 Simple Canonical Transformations

First, we will show how to e ciently transform a di erential operator L(x;D) into
a new dierential operator C(y;D) = U L(x;D)U where U is a Fourier integral
operator related to a canonical transformation (y; ) = (x; ) by Egorov's Theorem.
For clarity we will assume thatL(x;D) is a second-order operator, but the resulting
algorithm can easily be applied to operators of arbitrary ater.

Algorithm 4.2  Given a self-adjoint di erential operator L(x; D) and a function
Yx) satisfying qx) > 0 and 02 Yx) dx = 1, the following algorithm computes the
di erential operator C = U LU whereUf (x) = W) ( (X)).

RX
= , Ys)ds

L = l=2L 1=2

for k=j+1;:::;2
Cy = C|9+ Ck 1 0
end



92 CHAPTER 4. IMPLEMENTATION

L; =0
for k=0;:::;];
L = Lj+((aCw1)  HDX
end
C=C+ L
end

In addition to transforming the operator L(x; D), the initial data f (x) must be trans-
formed into f~= U f. This can be accomplished e ciently using cubic splines to
compute the composition of with 1. Clearly, this algorithm requiresO(N logN)
time, assuming that each function is discretized on aN -point grid and that the fast
Fourier transform is used for di erentiation.

4.4.2 Eliminating Variable Coe cients

Suppose we wish to transform amth-order self-adjoint di erential operator L(x; D)
into C(x;D) = Q (x;D)L(x;D)Q(x; D) where coe cients of orderJ and above are
constant. After we apply Algorithm 4.2 to makean, (x) constant, we can proceed as

follows:
j=m 2
k=1

while j>=J
Let g (x) be the coe cient of order j in L(x;D)
i = D* (& (X)=2am (X))
Let E(;D) = j(x)(D*)
Let Q(x;D) =exp[(E(x;D) E (x;D))=2]
L(x;D)= Q (x;D)L(x;D)Q(x;D)
=i 2
k=k+2
end



4.4. PRECONDITIONING 93

SincelL(x; D) is self-adjoint, this algorithm is able to take advantage Proposition
3.2 to avoid examining odd-order coe cients.

In a practical implementation, one should be careful in comyting Q LQ. Using
symbolic calculus, there is much cancellation among the coients. However, it is
helpful to note that

X

expl A(GD)IL(G;D)expAXG D)= C(xD); (4.21)
W

where the operatord C-(x; D)g satisfy the recurrence relation
Co(x;D)=L(x;D); C(x;D)=C: 1(x;D)A(X;D) A(X;D)C: 1(x;D); (4.22)

and eachC-(x;D) is of orderm + “(k 1), wherek < 0 is the order of A(x;D).

Expressions of the formA(x;D)B(x;D) B(x;D)A(x;D) can be computed without
evaluating the rst term in (3.14) for each of the two producs, since it is clear that
it will be cancelled.

The operator Q(x; D) must be represented using a truncated series. In order to
ensure that all coe cients of L(x; D) of order J or higher are correct, it is necessary
to compute terms of orderJ m or higher. With this truncated series representation
of Q(x; D) in each iteration, the algorithm requiresO(N logN) oating-point opera-
tions when anN -point discretization of the coe cients is used and the fastFourier
transform is used for di erentiation. It should be noted, havever, that the number
of terms in the transformed operatorL (x; D) can be quite large, depending on the
choice ofJ.

4.4.3 Using Multiple Transformations

When applying multiple similarity transformations such asthose implemented in this
section, it is recommended that a variable-grid implementesn be used in order to
represent transformed coe cients as accurately as poss#él In applying these trans-
formations, error is introduced by pointwise multiplicaton of coe cients and com-
puting composition of functions using interpolation, and hese errors can accumulate



94 CHAPTER 4. IMPLEMENTATION

very rapidly when applying several transformations.

4.5 Other Implementation Issues

In this section we discuss other issues that must be addredsa a practical imple-
mentation of Algorithms 2.2 and 2.4.

45.1 Parameter Selection

We now discuss how one can select three key parameters in tihgoaithm: the number
of quadrature nodeXK , the time step t, and the scalar , by which e, is perturbed
to compute quantities of the form

el's( e + (f]; (4.23)

or
(e! + |f)HS( t)[e! + |f], (424)

for some gridfunctionf. We use the notation , to emphasize the fact that , can
vary with ! .

While it is obviously desirable to use a larger number of quaature nodes, various
di culties can arise in addition to the expected computational expense of additional
Lanczos iterations. As is well known, the Lanczos method sers from loss of orthog-
onality of the Lanczos vectors, and this vulnerability inceases with the number of
iterations since it tends to occur as Ritz pairs converge tdgenpairs (for details see
[21]). Furthermore, the number of terms in the symbolic re@sentations of Lanczos
vectors presented in Section 4.2 grow very rapidly as the nin@r of quadrature nodes
K increases. If a variable-grid implementation is used, ineasingK also dramatically
increases the storage requirements for these represeruas.

In order to choose an appropriate time step t, one can compute components of
the solution using a Gaussian quadrature rule, and then exid the rule to a Gauss-
Radau rule and compare the approximations, selecting a sraal t if the error is too



4.5. OTHER IMPLEMENTATION ISSUES 95

large relative to the norm of the data. Alternatively, one ca use the Gaussian rule
to construct a Gauss-Kronrod rule and obtain a second apprioration; for details see
[5]. However, it is useful to note that the time step only play a role in the last stage
of the computation of each component of the solution. It fatws that one can easily
construct a representation of the solution that can be evahied at any time, thus
allowing a residual@u=@ L(x; D)u to be computed. This aspect of our algorithm
is fully exploited in Section 6.1.

By estimating the error in each component, one can avoid unoessary construc-
tion of quadrature rules. For example, suppose that a timesp t has been selected,
and the approximate solutionu{x; t) has been computed using Algorithm 2.2 or
2.4. Before using this approximate solution to construct th quadrature rules for
the next time step, we can determine whether the rules consirted using the initial
data f (x) can be used to compute any of the components ofx-2 t) by evaluating
the integrand at time 2 t instead of t. If so, then there is no need to construct
new quadrature rules for these components. The following mhiccation of Algorithm
2.2 encapsulates this idea. It is assumed that an error estie for each integral is
obtained using some quadrature rule, as discussed in the yimus paragraph.

Algorithm 4.3  Given a gridfunction f representing the initial data f (x), a nal
time tsjno and a timestep t such thatts,y = n t for some integem, the following
algorithm computes an approximatiorl:rjr”1 to the solution u(x; t) of (1.1), (1.2), (1.4)
evaluated at each gridpointx; = jh forj =0;1;:::;N 1 with h=2 =N and times
th, Where 0 =ty <t; < <tnh = tfjna -

ud=f

t=0

for I = N=2+1;:::;N=2 1
n =0

Choose a positive constant,
Compute the Jacobi matrices), and J,., ,
using Algorithm 2.3
end



96 CHAPTER 4. IMPLEMENTATION

while t, <ty do
Select a timestep t
repeat
ther = th+
for ! = N=2+1;:::;N=2 1

up = ef exp[ Ji (thrs o, )]Es
u, = et exp[ Jin, (ther  tn,)]€1
oMt = (U2 ug)=,
if error in 07'*! is too largethen
if n>n, then
n =n
Recomputed;, , , Uz, Uy, and 0]+
else
Choose a smaller timestep t
Abort computation of a"*!
end
end
until error in aP** is su ciently small
end
until 0"*! is computed
u_n+1 =T 10n+1

end

Finally, we discuss selection of the parameter . On the one hand, smaller values
of , are desirable because, as previously discussed, the quadeaerror is reduced
when the vectorsu and v in u" f (L)v are approximate eigenfunctions of the matrix
L whenL is a discretization of a di erential operator. Furthermore smaller values
of , minimize lost precision resulting from the subtraction of ntegrals that are
perturbations of one another.

However, ,megashould not be chosen to be so small tha¢y ande, + ,f are
virtually indistinguishable for the given precision. In the case of (4.23),, must be



4.6. SUMMARY 97

chosen su ciently small so that the measure remains positevand increasing. This is
easily checked when the vectors and v are real: if any of the weights are negative,
a smaller value of , must be chosen. In practice, it is wise to choose to be
proportional to kfk.

4.5.2 Reorthogonalization

As discussed in [21], the symmetric Lanczos process can sum@m loss of orthogo-
nality among the Lanczos vectors, causing deterioration efccuracy in the computed
nodes and weights for Gaussian quadrature and loss of seVemalers of accuracy in
integrals computed using these nodes and weights. There a®veral known strate-
gies used for reorthogonalization (see for instance [2035], [36], [40]), but in the
context of using Gaussian quadrature for solving time-depdent PDE it is impor-
tant to choose a method that can be used with the representatis of Lanczos vectors
presented earlier in this section. One such choice sslective orthogonalization rst
presented in by Parlett and Scott in [36]. This technique pndes a simple test for
determining whether it is necessary to orthogonalize, as Ivas which vectors must
be included in the orthogonalization process. Given our regsentation of Lanczos
vectors, it is best to perform the orthogonalization usinglte modi ed Gram-Schmidt
procedure (see [2], [37]), which can easily be adapted to ukes representation.

4.6 Summary

In this chapter we have succeeded in designing an implemetnva of Algorithms 2.2
and 2.4 that require O(N logN) oating-point operations per time step. Unfortu-
nately, this operation count can be written asT(N) = C;N logN + C,N logN +
lower-order terms, whereC, and C, are still unacceptably large. However, there are
three factors which mitigate this concern:

Due to the high-order accuracy of the quadrature rules inveéd, fewer time steps
are required to obtain a su ciently accurate solution than nite-di erence or
Fourier spectral methods that are much less expensive pemie step.



98 CHAPTER 4. IMPLEMENTATION

Unlike semi-implicit time-stepping methods, Algorithms 22 and 2.4 allow signif-
icant parallelism, since much of the computation of a singléourier component
of the solution is entirely independent of the computation foother components.

Speci ¢ features of the operatot (x; D) can be exploited to optimize the process
of computing Jacobi matrices signi cantly, as discussed iBection 4.3.1.

In future work, attempts will be made to reduce the overall opration count necessary
to compute an accurate solution at timesi,, , through a combination of reducing the
number of time steps needed and improving the e ciency of eadime step.



Chapter 5
Numerical Results

This chapter describes several numerical experiments thateasure the e ectiveness of
the methods developed during the preceding chapters. We Wibmpare the accuracy
and e ciency of our algorithm to standard solution methods br a variety of problems,
in an attempt to demonstrate its strengths and weaknesses.

5.1 Construction of Test Cases

In many of the following experiments, it is necessary to cotmgct functions of a given
smoothness. To that end, we rely on the following result (sg¢27]):

Theorem 5.1 (Gustafsson, Kreiss, Oliger) Let f (X) be a 2 -periodic function
and assume that itspth derivative is a piecewiseC?! function. Then,

if(1)j constant(j! j*** +1): (5.1)

Based on this result, the construction of &P*! function f (x) proceeds as follows:

1. For each! = 1;:::;N=2 1, choose the discrete Fourier coe cientf(! ) by
setting f'(! ) = (u+iv)5! P*1 +1j, whereu and v are random numbers uniformly
distributed on the interval (0; 1).

2. Foreach! =1:::::N=2 1, setf( !)= f{!).

99



100 CHAPTER 5. NUMERICAL RESULTS

3. Setf'(0) equal to any real number.
P .
4. Setf (x) = p1= oo f)EX.

In the following test cases, coe cients and initial data areconstructed so that their
third derivatives are piecewiseC?, unless otherwise noted.

We will now introduce some di erential operators and functns that will be used
in a number of the experiments described in this chapter andiapter 6. As most of
these functions and operators are randomly generated, wellvdenote by Ry; Ry;:::
the sequence of random numbers obtained using MATLAB's randh number genera-
tor rand after setting the generator to its initial state. These numlers are uniformly
distributed on the interval (0;1).

We will make frequent use of a two-parameter family of funatns de ned on
the interval [0; 2 ]. First, we de ne

8 9
< X . =
fx (X)=Re )@+ j <t k=0;1:::;  (5.2)

" jlj<N=2:1 60
where
f1(1) = Rinwz(r+n=2) 1+ IRjN w201 +n=2): (5.3)

The parameterj indicates how many functions have been generated in this
fashion since setting MATLAB's random number generator tots initial state,
and the parameterk indicates how smooth the function is. Figure 5.1 shows
selected functions from this collection.

In many cases, it is necessary to ensure that a function is ibge or negative,
so we de ne the translation operatorE® and E by

E*f(x)= f(X) err[})i;rzllf(x)+1; (5.4)

E f(xX)=f(x) Xg&?g(]f(x) 1 (5.5)



5.1. CONSTRUCTION OF TEST CASES 101

j=0, k=0 j=0, k=3
2 : 0.8 :
15
0.6}
—~ 1r —
< <
«° 2
0.5}
0.21
0 L
-0.5 : : : 0
0 2 4 6 8 0 2 4 6 8
X X
j=1, k=0 =1, k=3
1.5 0.6
0.5
1
X
5 0.5
o
0 L
05 ‘ ‘ : -0.1
0 2 4 6 8 0 2 4 6 8
X X

Figure 5.1: Functions from the collectiorf j, (x), for selected values of and k.



102 CHAPTER 5. NUMERICAL RESULTS

j=0, k=3 =1, k=3

0.45 .

0.05.

Figure 5.2: Functions from the collectiong; (x;y), for selected values of and k.

We de ne a similar two-parameter family of functions de nedon the rectangle
;2] [062 ]

8 9
<

X _ =
Gx (5y) = Re . G (5 @+t ptet )
" i j<N=21 60 ;
(5.6)
wherej and k are nonnegative integers, and

G (5 )= Rinzegng +n=2 1+ +n=2)] 1+ IRjN 242N +N=2 1+( +n=2)]:  (B.7)

Figure 5.2 shows selected functions from this collection.



5.1. CONSTRUCTION OF TEST CASES 103

Many experiments will involve the one-parameter family ofandomly generated
self-adjoint di erential operators

Ly(;D)=D E fokD + E*fyx; k=0;1;:::: (5.8)

where the operatorsE™ and E were de ned in (5.4), (5.5).

Another one-parameter family of di erential operators tha we will use is de ned

by
M;(x;D)= D E [Dfgs]D + E*[Difys]; j=0;1:::: (5.9)

We will use the operator that was rst introduced in (3.32) toillustrate local
preconditioning,

1 . 1
P(x;D)= D 1+§smx D 1 écos2< : (5.10)

Many of the experiments described in this chapter and Chaptes are intended to
illustrate the convergence behavior of Algorithms 2.2 and.2, with certain varia-
tions, on various problems. In all such experiments, unlesgsherwise noted,N = 64
grid points are used, and solutionsi)(x;t) are computed using time steps t =
21, forj =0;:::;6. The error estimates are obtained by computingu®)( ;1)
u®(;1)k=ku®(;1)k. This method of estimating error assumes that® (x;t) is a
su ciently accurate approximation to the exact solution, but this has proven in prac-
tice to be a valid assumption by comparingu® against approximate solutions com-
puted using established methods, and by comparing® against solutions obtained
using Algorithms 2.2 and 2.4 with smaller time steps. It shdd be noted that we
are not seeking a sharp estimate of the error, but rather an diication of the rate of
convergence, and for this goal, using® as an approximation to the exact solution
is su cient. More rigorous error estimation will appear in future work.



104 CHAPTER 5. NUMERICAL RESULTS

5.2 Timestep Selection

For our rst example, we will solve the problem

%Lgx;t) + L3(x;D)u(x;t)=0; O0<x< 2; t> 0 (5.11)
u(x;0)= E*fgs(x); 0<x< 2; (5.12)
ux;t) = u(x+2;t); t>0 (5.13)

using the following methods:

The Crank-Nicolson method with central di erencing
Algorithm 2.2, with 2 nodes determined by Gaussian quadrate

Algorithm 2.2, with 2 nodes determined by Gaussian quadrata and one ad-
ditional prescribed node. The prescribed node is obtained kestimating the
smallest eigenvalue of using the symmetric Lanczos algorithm.

in the Gauss-Radau rule.

5.3 Smoothness of Coe cients

In this section we examine the performance of Algorithm 2.2f solving

%Lgx;t)+ Mc(x;D)u(x;t)=0; O0<x< 2; t> 0;k=0;1;2 (5.14)
u(x;0)= E*fga(x); 0<x< 2; (5.15)
ux;t) = u(x+2;t); t> 0: (5.16)

then solve the problem again withM(x;D) for k = 1;2. Figure 5.4 illustrates the



5.3. SMOOTHNESS OF COEFFICIENTS 105

Relative error for varying time steps
10" ¢ \ \ \ — \

relative error

[y
o
T

10° - 3

107 e .

F a —— Crank-Nicolson |7
— — Gauss 1

— - Gauss-Radau

-7 . . |

10° 10" 10
time step

10

Figure 5.3: Estimates of relative error in the computed sotion t(x;t) of (5.11),
(5.12), (5.13) att = 1. Solutions are computed using nite di erences with Crark-
Nicolson (solid curve), Algorithm 2.2 with Gaussian quadtare (dashed curve), and
Algorithm 2.2 with Gauss-Radau quadrature (dotted-dashedurve) with various time
steps andN = 64 grid points.



106 CHAPTER 5. NUMERICAL RESULTS

Convergence for operators of varied smoothness (Gaussian rule)

relative error
[5=Y
o
T

10* E
10»5 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ 0
10° 10 10
time step
o Convergence for operators of varied smoothness (Gauss-Radau rule)
10 ‘ ‘ ‘ ———— ‘ ‘ ‘ ‘
10° |

relative error
(==Y
o
T

[y
o,
o
T

10- 2 ‘ ‘ ‘ ‘ ‘ 1 ‘
10 10 10
time step

Figure 5.4: Estimates of relative error in the approximatedution w(x;t) of (5.14),
(5.15), (5.16) att = 1. Solutions are computed using Algorithm 2.2 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.

e ect of smoothness on the algorithm. By Theorem 2.5, the esr is bounded by
C: t3 when using the Gaussian rule an€, t* when using the Gauss-Radau rule,
but the constants C, and C, are larger when the coe cients are less smooth, and
lower-order terms in the local truncation error exhibit lager constants as well. As a
result, the more oscillatory the coe cients are, the smallethe values of t at which
the theoretical convergence rate can be observed. We wilvigt this issue when we
study the e ect of preconditioning on convergence.



5.3. SMOOTHNESS OF COEFFICIENTS 107

For our next example, we solve the problem

%;(x;th kP(x;D)u(x;t)=0; 0O<x< 2; t> 0 (5.17)
u(x;0) = E"fga(x); 0<x< 2; (5.18)
ux;t) = u(x+2;t); t> 0: (5.19)

The parameterk is used to increase the amplitude of the coe cients. We solvthis
problem fork = 1;2; 4 to study the e ect of increasing variance in the coe cientson
the convergence. Figure 5.5 illustrates this e ect, whichsisomewhat similar to the
e ect of varying smoothness: the rate of convergence is skgy though this e ect is
much more pronounced in the case of the Gaussian rule whenngslarger timesteps.
It should be noted, however, that because the decay rate of@h~ourier components
of the coe cients is the same in all cases, the e ect on the ra& of convergence is
much less noticeable than when the decay rate is varied, astire previous example.

Next, we solve the problem

%Lgx;t)+ Li(x;D)u(x;t)=0; 0O0<x< 2; t> 0 (5.20)
u(x;0)= E*[D fos(X)]; 0<x< 2; (5.21)
ux;t) = u(x+2;t); t> 0; (5.22)

for* =0;1; 2, to study the e ect of the smoothness of the initial data on anvergence.
The results are illustrated in Figure 5.6. While the smoothess of the initial data does
not a ect the convergence to the extent that the smoothnessfahe coe cients does,

it is still signi cant. It is generally best in the case of nonsmooth data to use more
gridpoints, in order to reduce the error introduced by trunation of Fourier series.

Finally, to test the limits of our methods, we apply them to the problem

%Lgx;t) D %H(x )Du +%H(x Ju=0; 0O0<x< 2; t> 0; (5.23)

u(x; 0) = foo(x); O0<x< 2; (5.24)



108 CHAPTER 5. NUMERICAL RESULTS

Convergence for operators of varied amplitude (Gaussian rule)

10 ‘ ‘ ‘ ‘ ——T
S
@
()
=
<
[
10»5 2 ‘ ‘ ‘ ‘ ‘ ‘ — 1 ‘ 0
10° 10 10
time step
o Convergence for operators of varied amplitude (Gauss-Radau rule)
10 : : : —— : :
10° |

relative error
(==Y
o:
S
T

[y
o,
o
T

10- 2 ‘ ‘ ‘ ‘ ‘ ‘ — 1 ‘ ‘ ‘ ‘ ‘ ‘ — 0
10 10 10

time step

Figure 5.5: Estimates of relative error in the approximatedution w(x;t) of (5.17),
(5.18), (5.19) att = 1. Solutions are computed using Algorithm 2.2 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.



5.3. SMOOTHNESS OF COEFFICIENTS 109

Convergence for initial data of varied smoothness (Gaussian rule)

10

[
o.
N
T

[
T —

relative error
[
o
T

10"k
10»5 2 ‘ ‘ ‘ ‘ — 1 ‘ 0
10° 10 10
time step
o Convergence for initial data of varied smoothness (Gauss-Radau rule)
10 T T T T T T T T T T T T T T T T i .
10° |

N

relative error
[
o
T

[Eny
o,
o
T

10 : : : ‘ ‘ :
10 10 10
time step

Figure 5.6: Estimates of relative error in the approximate aution t(x;t) of (5.20),
(5.21), (5.22) att = 1. Solutions are computed using Algorithm 2.2 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.



110 CHAPTER 5. NUMERICAL RESULTS

u(x;t)=u(x+2;t); t>0: (5.25)

Figure 5.7 compares the performance of Algorithm 2.2 with & Crank-Nicolson
method and the Fourier method. In this case, Gaussian and Gs&+tRadau quadrature
exhibit nearly cubic convergence for su ciently small t, whereas the Crank-Nicolson
method with nite di erencing and the Fourier method used with Matlab's sti ODE
solver ode23s both exhibit linear convergence. It should be noted that thelata for
the Crank-Nicolson method is misleading, since the compuateolution includes oscil-
lations caused by Gibbs' phenomenon, whereas the true satut is smooth. It should
be noted that these results were obtained using theariable-grid implementation of
the N operation introduced in Section 4.2. Figure 5.8 illustrate the di erence in the
solutions computed using the xed-grid and variable-grid pproaches.

5.4 Component Analysis

Figure 5.9 shows the accuracy in each frequency componentttoé computed solu-
tion using various methods. This accuracy is measured by cpating the relative
di erence in the rst and second derivatives of approximatesolutionst; and tj 1 to
the problem (5.11), (5.12), (5.13). Each approximate solidn t; is computed using

the error in u; using theH ! and H?2 seminorms (see [30]), where
yA 2
kuk?, = iD"u(x)j dx: (5.26)
0
The methods used for the comparison are Crank-Nicolson withite di erencing,
backward Euler with the Fourier method, and Gauss-Radau quiature with two
Gaussian quadrature nodes. As can easily be seen, Gaussdriaguadrature provides
more rapid convergence for both higher- and lower-frequgncomponents than the
other two methods. Gaussian quadrature with no prescribedonles does not perform
as well, since the lower bounds that it yields for each integk are not as sharp as the
upper bounds obtained via Gauss-Radau quadrature.



5.4. COMPONENT ANALYSIS 111

Relative error for varying time steps, discontinuous data, parabolic problem

10" : ; : —
10° F
10" F
S
@
(]
=
8
g
107 |
10° b v
N Ve ]
a : ]
p —— Crank-Nicolson |]
e Fourier
- — — Gauss
. — - Gauss-Radau
10 2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘l ‘ ‘ ‘ ‘ — 0
10 10 10

time step

Figure 5.7: Estimates of relative error in the approximatedution w(x;t) to (5.23),

(5.24), (5.25) att = 1. Solutions are computed using nite di erences with Crark-

Nicolson (solid curve), the Fourier method (dotted curve),Gaussian quadrature
(dashed curve) and Gauss-Radau quadrature (dotted-dashedrve) with various time

steps andN = 64 grid points.



112 CHAPTER 5. NUMERICAL RESULTS

Solutions computed with fixed and variable grids, parabolic problem
0.36 T T T \ \ \

0.355

0.35

o I
T \
= 0.345 f
x
=1
0.34 _
0.335 f
— Fixed grid
— - Variable grid
033 | | | | | |
0 1 2 3 4 5 6 7

Figure 5.8: Approximate solutions of (5.23), (5.24), (5.25computed using the xed-
grid and variable-grid methods from Section 4.2. In both cas,N = 64 gridpoints
are used to represent the approximate solutions, andt = 1=64.



5.4. COMPONENT ANALYSIS 113

Relative error in first derivative

10 ‘ : : ]
107
S
5 o ~
210" - - - 1
kS =T
] —
-6 -
10 -7 —— FD/Crank-Nicolson
T — — Fourier/Backward Euler
— - Gauss-Radau
10»8 2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘l ‘ ‘ ‘ ‘ ‘ 0
10 10 10
time step
o Relative error in second derivative
10 T T T
5107
@
(]
=
i 4
Q10”7 .
T —— FDI/Crank-Nicolson
- — — Fourier/Backward Euler
=T — - Gauss-Radau
10'6 - ! P | - ! ! ! ! ! .
10 10 10
time step

Figure 5.9: Relative error estimates in rst and second deratives of approximate
solutions to (5.11), (5.12), (5.13), measured using thé* and H? seminorms, respec-
tively. In all casesN = 64 gridpoints are used.



114 CHAPTER 5. NUMERICAL RESULTS

5.5 Selection of Quadrature Nodes

We now investigate how convergence is a ected by increasitite number of Gaussian
guadrature nodes used. Figure 5.10 shows error estimates dpproximate solutions

used. As the number of quadrature nodes increases, the erdacreases, but the rate
of convergence is approximately the same as with 2 nodes. 3lis likely due to the
fact that with each additional node, the degree of the polymaial factor in the error
(2.16) increases by 2, resulting in a larger error unlesd is su ciently small to o set
the growth in the polynomial. Figure 5.11 compares the e ciacy of using Gaussian
guadrature with various numbers of nodes. Unfortunately, te additional accuracy
is more than o set by increased computational e ort in constucting the Jacobi ma-
trices and associated quadrature rules. It is hoped that witfurther advances in the
optimization of this process, as well as improved technigsidor selecting quadrature
nodes and weights, such as using rational functions to appimate the exponential
instead of interpolating polynomials, this situation can eentually be remedied.

5.6 Preconditioning

In this section we will study the e ects of preconditioning @ di erential operators in
the context of various solution methods for initial-bounday value problems.

First, we consider the problem

%Lgx;t) P(x;D)u(x;t)=0; 0O<x< 2; t> 0 (5.27)
u(x;0) = E"fga(x); 0<x< 2; (5.28)
ux;t) = u(x+2;t); t>0: (5.29)

Figure 5.12 shows the symbdlL(x; ) before preconditioning is applied. Figure 5.13
shows the symbol ofA = U PU where U is a Fourier integral operator induced
by a canonical transformation that makes the leading coe @nt constant. Finally,



5.6. PRECONDITIONING 115

Relative error for varying number of quadrature nodes

10 r ' ' ' ' ' ' T ]
P
-
g i
2 // ./
- 7
10" e _ i
Ve ./'
// '/
s e
s e
s 7/
s v
3 s '
10" ¢ s /-/ E
§ // e
@ P -
() V2 Ve
5 v v
© Ve s
e . // e
- e
10 s i
/s P
//>/‘
I
/‘/
Y
/A/
5 ad
10" | [ -
1
.
Ve
—— 2 nodes |
— — 3 nodes |
. — - 4 nodes
10 . L L L L L L L L Il L L L ) ) ) ) ) .
10 10 10

time step

Figure 5.10: Relative error estimates in approximate soligns of (5.11), (5.12), (5.13)
computed using Gaussian quadrature witlK = 2;3;4 nodes. In all casefN = 64



116 CHAPTER 5. NUMERICAL RESULTS

Efficiency comparison of MATLAB implementations
14 T T TTTT T T TTTTT T T TTTT T T TTTT

12 : 7

[Eny
o
T
—
|

execution time (seconds)
Ve

—— 2 nodes
— — 3 nodes
— - 4 nodes

10° 10° 10" 10° 107 10"

relative error

Figure 5.11: Plot of relative error estimates versus exeg¢ah time in computing
approximate solutions of (5.11), (5.12), (5.13) using Gassn quadrature with K =
2:3;4 nodes. In all case® = 64 gridpoints are used, with time steps t =2 | for
] =0;:::;6.



5.6. PRECONDITIONING 117

Symbol of original variable-coefficient operator P(x,D)
100 T T T T

P!

Figure 5.12: Symbol of original variable-coe cient operabr P (x; D) de ned in (5.10)

Figure 5.14 shows the symbol d8 = Q AQ whereQ is designed to make the zero-
order coe cient of A constant, using the technique described in Section 3.5. The
transformation U smooths the symbol oP (x; D) so that the curvature in the surface
de ned by jA(x; )j has uniform curvature with respect to . The transformation Q
yields a symbol that closely resembles that of a constant-€aient operator except

at the lowest frequencies.

We now solve the problem (5.27), (5.28), (5.29) with and witbut preconditioning.
As before, we use two nodes determined by Gaussian quadr&and one prescribed
node to obtain a Gauss-Radau rule. Figure 5.15 illustratefi¢ convergence behavior
in both cases. We see that preconditioning by making both theecond-order and



118 CHAPTER 5. NUMERICAL RESULTS

Symbol of transformed operator A(x,D) (a2:constant)
60 T T T \ T T

40 -

[AXX)|
w
o
T
!

20 7

of

Figure 5.13: Symbol of transformed operatoA(x;D) = U P(x;D)U whereP(x;D)
is de ned in (5.10) andU is chosen to make the leading coe cient oA(x; D) constant.



5.6. PRECONDITIONING 119

Symbol of transformed operator B(x,D) (aozconstant)
60 T T

50 7

40 .

[B(x.X)
w
o
T
!

20 7

10| 7

X

Figure 5.14: Symbol of transformed operatoB(x;D) = Q U L(x;D)UQ where
P(x;D) is dened in (5.10) and the unitary similarity transformations Q and U
make B (x; D) a constant-coe cient operator modulo terms of negative ader.



120 CHAPTER 5. NUMERICAL RESULTS

zeroth-order coe cients constant, at the expense of introdcing variable coe cients

of negative order, provides signi cant improvement for theGaussian rule. For the
largest time step t =1, the relative error is approximately 1/3 of the error obtaned

without preconditioning, and for the smallest time step t = 1=32, this ratio has de-
creased even further to approximately 1/6 as the cubic comgence in time predicted
by Theorem 2.5 has nearly been attained in both cases. On thther hand, precon-
ditioning adds little to the already superior accuracy proided by the Gauss-Radau
rule.

Let us now examine the component-wise error in both cases.gbre 5.16 illustrates
the relative error in each frequency component in the nal dotion computed both
with and without preconditioning. Clearly, preconditioning yields signi cantly greater
accuracy for components corresponding to higher frequeesi It is also interesting to
note that preconditioning provided signi cantly greater accuracy at larger timesteps.
It is the hope that with improvements in the implementation, this advantage can be
further exploited to quickly compute accurate solutions aer larger time intervals.

Next, we consider the problem

%Lgx;th Li(x;D)u(x;t)=0; 0O0<x< 2; t> 0 (5.30)
u(x;0) = E"fga(x); 0<x< 2; (5.31)
ux;t) = u(x+2;t); t>0: (5.32)

In this case, the coe cients are not as smooth. As the conveegice behavior in Figure
5.17 illustrates, preconditioning is bene cial in the Gaus-Radau case, but not for the
Gaussian case when the timestep is smaller.

It is worthwhile to investigate whether these preconditiomg techniques are help-
ful when using standard numerical methods to obtain appromate solutions. To that
end, Figure 5.18 illustrates the e ect of preconditioning o explicit spectral methods
applied to the problem (5.27), (5.28), (5.29), as well as thproblem (5.30), (5.31),
(5.32). In both cases, a Galerkin method is used to obtain tHeourier components of
the approximate solution, as discussed in Section 1.2. Asishgure shows, precondi-



5.6. PRECONDITIONING 121

Convergence for various levels of preconditioning (smooth coefficients, Gaussian rule)

10 ‘ : — —
510° -
@
()
=
§ 4
210" | _
- - —— none
- _ _ a,constant
- — . a,constant
10° . ‘ ‘-1 0
10 10 10
time step
o Convergence for various levels of preconditioning (smooth coefficients, Gauss-Radau rule)
10 \ \ \ —— \ \ \ ——
102 | =

relative error
[y
o
T

10° L — none
T _ _ a,constant
a, constant
10-8 2 ‘ ‘ ‘ ‘ ‘ ‘l ‘ 0
10 10 10
time step

Figure 5.15: Estimates of relative error in the approximateolution e(x;t) of (5.27),
(5.28), (5.29) att = 1, computed using no preconditioning (solid curve), a sinarity
transformation to make the leading coe cient of A(x;D) = U P(x;D)U constant
(dashed curve), and a similarity transformation to makeB(x;D)= Q U P(x;D)UQ
constant-coe cient modulo terms of negative order. In all asesN = 64 grid points



122 CHAPTER 5. NUMERICAL RESULTS

Relative error in frequency components (Gaussian rule)
14 T T T T T I

— hnone

_ a2 constant

aO constant

relative error
o

[0}

T

o
)
T

0.4

-40 40

wave number

Figure 5.16: Relative error in frequency components with arwithout preconditioning



5.6. PRECONDITIONING 123

Convergence for various levels of preconditioning (non-smooth coefficients, Gaussian rule)

10° 3 \ \ \ \ —
10"
S
B -2
2107 F —
= -
2
10° b —— none 1
_ a,constant |
[ a, constant |
10-4 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-l 0
10 10 10
time step
o Convergence for various levels of preconditioning (non-smooth coefficients, Gauss-Radau rule)
10 \ \ \ —— \ \ \ ——
510° -
@
()
=
E 4
10" F .
- T —— none
P — _ a,constant
- a, constant
10-6 -2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘-1 ‘ 0
10 10 10
time step

Figure 5.17: Estimates of relative error in the approximateolution t(x;t) of (5.30),
(5.31), (5.32) att = 1, computed using no preconditioning (solid curve), a sinarity
transformation to make the leading coe cient of A(x;D) = U L(x;D)U constant
(dashed curve), and a similarity transformation to makeB(x;D)= Q U L(x;D)UQ
constant-coe cient modulo terms of negative order. In all asesN = 64 grid points



124 CHAPTER 5. NUMERICAL RESULTS

Convergence for various levels of preconditioning (Galerkin method, smooth coefficients)

10 T T R T T T R
101 N
Ei: 10} N
=
1050 | B
—— none
— - a, constant
100 4 — ‘ 3 — 0
10 10 10
time step
200 Convergence for various levels of preconditioning (Galerkin method, non-smooth coefficients)
10 T T L | T T L | T T L | T T T
101 N
g 10} N
=
1050 | B
—— none
— - a,constant
10° - ——
10 10

time step

Figure 5.18: Size of solutions computed dt = 1 using the Galerkin method with
forward Euler at various time steps, with and without precoditioning. Top gure
is for problem (5.27), (5.28), (5.29) while bottom gure is dr problem (5.30), (5.31),

(5.32).



5.7. APPROXIMATING EIGENFUNCTIONS 125

tioning yields stability at a larger time step. Using the moe advanced preconditioning
techniques developed in Section 3.5 do not provide additianbene t for second-order
problems.

5.7 Approximating Eigenfunctions

By applying the preconditioning transformations to Fourie wavesé€™ , excellent ap-
proximations to eigenvalues and eigenfunctions can be obtad. This follows from
the fact that if the operator Q L(x;D)Q is close to a constant-coe cient operator,
then €' is an approximate eigenfunction o L(x; D)Q, and thereforeQée™* should
be an approximate eigenfunction ot (x; D).

Let L(x;D) = P(x;D) from (5.10). Figure 5.19 compares eigenfunctions com-
puted using this technique to eigenfunctions obtained by dgonalizing a matrix that
represents a discretization of the operatok (x; D). Note that for high and low fre-
guencies alike, the eigenfunctions computed using theseot@pproaches are indis-
tinguishable on a plot. Figure 5.20 displays the relative esr, measured using the
L, norm, in eigenfunctions corresponding to the lowest 25 emalues of P(x;D).
The transformation Q makes the second-order and zeroth-order coe cients constia
using the techniques presented in Sections 3.4 and 3.5.

5.8 Performance

In this section we will evaluate the performance of two varigs of Algorithm 2.2.
In both cases, the required quadrature rules are constructdy evaluating symbolic
representations such as those presented in Chapter 4. Thecdai matrices are com-
puted using the implementation in Section 4.3.1 and Algotitm 4.1. The performance
of both algorithms will also be compared against that of a rie-di erence scheme
applied to the same problem.

Figure 5.21 plots computation time versus accuracy for theemethods applied to
the problem (5.11), (5.12), (5.13). The three methods are:

1. Finite di erencing with Crank-Nicolson time-stepping



126

CHAPTER 5. NUMERICAL RESULTS

Approximate eigenfunctions of self-adjoint operator (high frequency)
0.2 T T T T T
— v,
_ vz(x)
0.1 .
X 0 i
>
-0.1 .
0.2 | | | | | |
0 1 2 3 4 5 6 7
X

v

Figure 5.19: Approximate eigenfunctions oP (x; D) from (5.10) generated by diago-
nalizing discretization matrix (v1(x)) and by preconditioning (v2(x))



5.8. PERFORMANCE 127

Relative error in approximate eigenfunctions of L(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)
10" ¢ T T T \

10 ¢

relative error
[y
o:
N

107 ¢

10' | | | |

j

Figure 5.20: Relative error, measured using the, norm, in approximate eigenfunc-
tions of P(x; D) from (5.10) generated by diagonalizing discretization meax and by
preconditioning to make second-order and zeroth-order coents constant



128 CHAPTER 5. NUMERICAL RESULTS

Efficiency comparison of MATLAB implementations
10" € T T T T T

relative error
=
o
T

10° b - _ E
\. h = -~ -~
10° S _
107 F T- : =
~ -~ | — Crank-Nicolson |3
— — Gauss ]
— - Gauss-Radau
10'8 I I I I I I T

0 1 2 3 4 5 6 7 8
execution time

Figure 5.21: Plot of execution time versus accuracy for nd-di erence and Gaussian
guadrature methods used to compute approximate solution pfoblem (5.11), (5.12),
(5.13) att = 1.

2. Algorithm 2.2 with 2 Gaussian quadrature nodes

3. Algorithm 2.2 with 2 Gaussian quadrature nodes and one Eeribed node

The relative error in 5.21 is given by the relative di erencebetween solutions com-
puted at time t = 1 at time steps tand 2 t, for t=2 1, j =1;::::7. The
execution time is the clock time required by all three methog] implemented in MAT-
LAB. In all cases,N = 256 grid points are used for the spatial discretization. We
see that using a Gaussian rule are almost as e cient as niteli erence methods,
while a Gauss-Radau rule provides greater accuracy than te-di erence methods in



5.8. PERFORMANCE

129

t Relative Error | Execution Time (Seconds)
1 1.011e-001 0.641
0.5 1.818e-002 0.671
0.25 3.215e-003 0.741
Crank-Nicolson 0.125 7.547e-004 0.861
0.0625 1.855e-004 1.121
0.03125| 4.414e-005 1.612
0.015625 8.827e-006 2.634
1 1.903e-002 0.741
0.5 5.590e-003 0.801
0.25 1.334e-003 0.911
Gaussian quadrature 0.125 2.849e-004 1.141
0.0625 6.015e-005 1.592
0.03125| 1.349e-005 2.514
0.015625 2.672e-006 4.396
1 1.183e-002 0.841
0.5 1.886e-003 0.961
0.25 2.407e-004 1.161
Gauss-Radau quadraturg 0.125 2.526e-005 1.602
0.0625 2.416e-006 2.444
0.03125| 2.103e-007 4.166
0.015625 1.558e-008 7.731

Table 5.1: Performance data for Crank-Nicolson, Gauss andaGss-Radau methods
applied to (5.11), (5.12), (5.13) withN = 256 gridpoints

the same amount of time. Table 5.1 summarizes the performandata gathered for
these three methods. In practice, it is seen that the execoti time scales approxi-
mately linearly with the number of gridpoints or the number ¢ timesteps. This is
to be expected, since the methods requi®(N logN) time per time step, and the
O(N logN) complexity is due to the use of the Fast Fourier transform,dr which

MATLAB's built-in implementation is used.

This performance data should be interpreted as a rough guide the relative per-
formance of the methods compared, since, in all three caspsrtions of the algorithms
are implemented in C and the remainder in MATLAB. A far more réiable comparison
would include full implementation of all algorithms in a conpiled language such as
C. The computations described in Table 5.1 were performeding a Hewlett-Packard



130 CHAPTER 5. NUMERICAL RESULTS

ze5170 with a 2.0 GHz Pentium 4 processor, running Windows Xffome Edition and
Matlab Release 12.

5.9 Long-Term Evolution

For a problem of the form (1.1), (1.2), (1.4) where the operat L(x;D) is positive
de nite, the solution u(x;t), wheret is su ciently large, can be well-approximated by
a linear combination of the eigenfunctions oE (x; D) corresponding to the smallest
eigenvalues. Therefore, it is worthwhile to compare the e iency of such an approach
to Krylov subspace methods.

We choosel (x; D) to be the second-order self-adjoint operatok 3(x; D) de ned
in Section 5.1, and compute select eigenfunctions using Ragh quotient iteration
(see [21]) on a discretization ok (x; D) Of the form (2.5). Table 5.2 compares the
performance of this approach with that of Algorithm 2.2 usig a 3-point Gauss-
Radau rule (i.e.,K = 2) to compute solutions at tfjns = 10 and tns = 30. Note
that for tqn,a = 10, Algorithm 2.2 achieves comparable accuracy in less tanwhile
the approach of computing eigenfunctions is more e cient fotsnyg = 30. Also,
note that reasonable accuracy was achieved using large tisieps, even though the
local truncation error is O( t?¢). The local truncation error, however, includes a
Riemann-Stieltjes integral of an exponentially decayinguhction. Since only a few
time steps are needed to compute an accurate approximation & solution that is
essentially parallel to the lowest-frequency eigenfunoth of L(x; D), it is worthwhile
to investigate whether Krylov subspace methods can be adagat to obtain an e cient
algorithm for computing low-frequency eigenfunctions. Rure work will examine such
an approach.



5.9. LONG-TERM EVOLUTION 131

N | Relative error | Execution time | Execution time t

ku vk=kuk for u for v

tina = 10 (ku( ;10k 3:418 10 %)
Convergence data

32| 1.3750e-003 0.401 0.411 2
64 | 3.0001le-004 1.542 1.252 1
128 | 1.7537e-005 6.890 4.327 0.5
Fixed Accuracy
32| 4.3085e-003 0.281 0.221 5
64| 4.1877e-003 1.201 0.300 5
128 | 4.2002e-003 5.458 0.491 5

tiinal = 30 (kU( ;30)k 1:649 10 11)
Convergence data

32| 2.3344e-003 0.130 0.401 6
64| 7.8693e-004 0.417 2.523 1.5
128| 8.3642e-008 2.093 17.355 0.375
Fixed Accuracy
32| 4.1579e-003 0.090 0.171 15
64| 4.2258e-003 0.370 0.250 15
128| 4.2950e-003 1.702 0.430 15

Table 5.2: Performance data for Algorithm 2.2 with 3-point @Guss-Radau rule
(v(x;1)), and method of eigenfunction expansionsu(x;t)), applied to (1.1), (1.2),
(1.4) with L(x; D) de ned to be the second-order self-adjoint positive de e opera-
tor L3(x;D) de ned in Section 5.1.N = 64 gridpoints are used in all cases.



Chapter 6

Conclusions

6.1 Extensions

Throughout this thesis, in order to simplify the presentaton, we have restricted our
discussion to problems in one space dimension that have tteerh (1.1), (1.2), (1.4),
where the operatorL(x; D) is second-order and self-adjoint. In this section, we will
examine the applicability of our methods to a broader rangef @roblems.

6.1.1 Problems in Higher Space Dimensions

The techniques presented in this thesis can be generalizednulti-dimensional prob-
lems. Problems inn space dimensions can be solved using an analogue of Alganth
2.2 by choosing an appropriate basis of simple waves axpfx; + + 1 .X,)] and

dimensions, so unitary similarity transformations can beanstructed for such cases.

We illustrate the process of generalizing to higher dimemsis with an example.
Let R be the rectangle

R=f(x;y)j0<x< 2;0<y< 2 g (6.1)

132



6.1. EXTENSIONS 133

We wish to solve the problem

%ﬁx;y;m LGy: D)UGGYi)=0; (xy)2R; t> 0 (6.2)
u(x;y;0) = E"goa(x;y); (xy) 2 R; (6.3)
ux;y;t) = u(x+2;y;t)=u(xy+2;t); t>0; (6.4)
where
LOGy;D)= 1 (E"goa(Xy)r )+ E" gqua(X;y): (6.5)

Recalling the de nitions from Section 5.2, the functionsy.3(x;y) and g..3(x;y) are
chosen to have continuous fourth partial derivatives. We dcretize the problem using
a grid of the form

Xj = jh; yx=kh; jjk=0;:::5;N; h= (6.6)
with N = 16. Figure 6.1 illustrates the accuracy of solutions comped using nite
di erences with the Crank-Nicolson method, then using Algathm 2.2 with two Gaus-
sian quadrature nodes, and then Algorithm 2.2 with two Gaussn quadrature nodes

and one prescribed node. As in the one-dimensional case, &lthm 2.2 requires
O(M logM) oating-point operations, where M is the number of gridpoints.

6.1.2 Non-Self-Adjoint Operators

While the development of our algorithm relied on the assumjun that L(x; D) was
self-adjoint, it can be shown that it works quite well in case whereL(x;D) is not
self-adjoint. Since the variable-coe cient rst-order wave equation can be solved
analytically in one space dimension, we instead present semesults from applying
the algorithm to the rst-order wave equation in two space dnensions,

%;(X: y;t)+ E" goa(X; y)%ﬁr

E+gl;3(X;Y)%;+E E3(X;y)ux;y;t) = 0; (xy)2R; t>0; (6.7)



134 CHAPTER 6. CONCLUSIONS

Relative error for varying time steps, 2-D problem

10 ¢ : : : —— .
-1
10" ¢ E
~
~
-
-2 _ —
10" F - E
o -~ ]
F P ]
- - :
— -~ 74
o - -
=] _ ) i
o 3 e Ve
(<] - - Ve n
210 7 -
= .
© - 7
© P .
= - .-
- - -
Ve -
4 - = -
10 :’ - - - - 4:
X s - ]
s
2 7
7
Ve . Ve
-5 e
10” i E
— Crank-Nicolson |1
— — Gauss
. — - Gauss-Radau
10 . L L L L L L L L T L L ) ) ) ) ) ) o
10 10 10
time step

Figure 6.1. Estimates of relative error in the approximate adution w(x;t) of (6.2),
(6.3), (6.4) att = 1 computed using nite di erencing with Crank-Nicolson (solid
curve), Algorithm 2.2 with Gaussian quadrature (dashed cwe), and Algorithm 2.2
with Gauss-Radau quadrature (dashed-dotted curve) wittN = 64 grid points and



6.1. EXTENSIONS 135

u(x;y;0) = E"goa(x;y); (Xy) 2 R; (6.8)
ux;y;t) = u(x+2y;t)=u(xy+2;t); t>0: (6.9)

Figure 6.2 illustrates the performance of Algorithm 2.2 onhis problem.

In [23], Goodman, Hou and Tadmor study the stability of the usmoothed Fourier
method when applied to the problem

@y . @ . RO : :
@'gx,t) @SN =0 0<x< 2; 1> 0 (6.10)
1 Ng2 1 o
u(x; 0) = p— €xil ° 0<x< 2; (6.11)
2 = N=2+1
ux;t)=u(x+2;t); t>0: (6.12)

Figure 6.3 compares the Fourier coe cients obtained usinghie Fourier method with
those obtained using Gauss-Radau quadrature as in Algorith2.4. It is easy to see
that using Algorithm 2.4 avoids the weak instability exhibted by the unsmoothed
Fourier method. As noted in [23], this weak instability can b overcome by using a
su ciently large number of gridpoints, or by applying Iter ing techniques (see [3]) to
remove high-frequency components that are contaminated liasing. Algorithm 2.4,
by computing each Fourier component using an approximatioto the solution oper-
ator that is tailored to that component, provides the bene t of smoothing, without
the loss of resolution associated with Itering.

While the theory presented and cited in Chapter 2 is not appiable to the non-
self-adjoint case, a plausible explanation can be given aswhy Gaussian quadrature
methods can still be employed for such problems. Each compon of the solution is
computed by approximating quantities of the form

f(uy=u"exp[ A tJu; (6.13)

whereu is an N-vector A is anN N matrix that may or may not be symmetric.



136 CHAPTER 6. CONCLUSIONS

Relative error for varying time steps, first-order wave equation
107 ¢ \ \ \ — \ \ \

relative error

[Eny
o,
&
T
\
1

10 3 e E

10> E’ o *E
3 —— Crank-Nicolson |1
— — Gauss 1
— - Gauss-Radau

8 . . . . R . .
10° 10" 10
time step

10

Figure 6.2: Estimates of relative error in the approximate dution w(x; 1) of (6.7),
(6.8), (6.9) computed using Crank-Nicolson (solid curve)Algorithm 2.2 with Gaus-
sian quadrature (dashed curve) and Algorithm 2.2 with GausRadau quadrature
(dotted-dashed curve) withN = 64 nodes and various time steps.



6.1. EXTENSIONS 137

The approximation f{u) of f (u) takes the form

" #
X .

f{u) = u" wie # 'Alu = u"P;(A)u; (6.14)
=0

and satis es I

X
fu) fu)= u" ( 1)"—t|kAk u; (6.15)
k=2J

k!

due to the construction of the left and right Lanczos vectors In this sense, the
high accuracy of Gaussian quadrature generalizes to the neelf-adjoint case. Each
qguantity f (u) can be viewed as an Riemann-Stieltjes integral over a contoin the
complex plane; the use of Gaussian quadrature to evaluatechuntegrals is discussed
in [39].

It should be noted, however, that instability can still occu if the integrals are
not computed with su cient accuracy. Unlike the weak installity that occurs in the
Fourier method, the remedy is not to use more gridpoints, buto ensure that the
same components are computed with greater accuracy. Thisnche accomplished by
choosing a smaller timestep or increasing the number of quature nodes, and both
tactics have been successful with (6.10), (6.11) in practic Figure 6.4 demonstrates
this instability and the e ectiveness of these remedies byisplaying the values of the
solution at t = 5, computed using various combinations of t and the number of
Gaussian quadrature nodeK .

6.1.3 Higher-Order Operators

Our algorithm does not require the operatoiL (x; D) to be rst- or second-order, so
certainly it is worthwhile to investigate its application to higher-order equations. To
that end, we attempt to solve the time-dependenbeam equation

%?x;t)+% E+f0;3a(X)%;(X;t) =0; 0<x< 2; t> 0 (6.16)

u(x;0)=f(x); 0<x< 2; (6.17)



138

15

0.5

Im u(x,1)

-0.5

2.5

15

Im u(x,1)

0.5

-0.5

CHAPTER 6. CONCLUSIONS

Fourier method

10

15 20 25 30
X

Gauss-Radau rule

35

10

15 20 25 30
X

35

Figure 6.3: Fourier coe cients of the approximate solutionws(x; 5) of (6.10), (6.11),
(6.12) computed using the Fourier method (top graph) and Algrithm 2.4 with Gauss-

Radau quadrature (bottom graph) with N = 64 nodes and time step t = 1=32.



6.1. EXTENSIONS 139

Size of solutions of du/dt=d(sin(x)u)/dx
10 ¢ T T T T I

[u(x,5)|

Figure 6.4: Size of approximate solutions of (6.10), (6.1,1(6.12) computed using
Algorithm 2.4 with Gauss-Radau quadrature, with various cmbinations of t and
the number of Gaussian quadrature nodes, denoted Y.



140 CHAPTER 6. CONCLUSIONS

u(x;t)=u(x+2;t); t>0: (6.18)
Figure 6.5 compares the performance of the following meth®dpplied to this problem:
Crank-Nicolson with nite di erencing,
Algorithm 2.2, employing Gaussian quadrature with 2 nodes.

In both cases,N = 64 gridpoints are used. The accuracy of Algorithm 2.2 is su-
perior to that of the Crank-Nicolson method with nite di er encing, although the
convergence rates are approximately equal for su ciently meall time steps. Note,
however, that for larger timesteps, Algorithm 2.2 exhibitssuperlinear convergence in
time, while Crank-Nicolson shows no sign of convergence iint t is su ciently small.

6.1.4 Other Boundary Conditions

Algorithm 2.4 computes the sine and cosine transforms of treolution, rather than
the standard Fourier transform, in order to avoid complex athmetic. From there, it
is a simple matter to use this algorithm to solve problems withomogeneous Dirichlet
or Neumann boundary conditions, as well as mixed boundary rditions.

For a problem de ned on a more complicated domais, if a set of linearly inde-
pendent functions' 4, :::, ' v is known where, for eacl, ' ; satis es the boundary
conditions, then Algorithm 2.4 can be adapted to use theserfations instead of simple

satisfy the following properties:

Let f be a function de ned onG. It should be easy to approximatef by a
linear combination

X
f fn= g (6.19)

j=1
and obtain the coe cients ¢, j = 1;:::;N, from the values off at N points
of G. Conversely, given the coe cientsc, j = 1;:::;N, it should be easy to

obtain the values off y at N points of G.



6.1. EXTENSIONS 141

Relative error for various time steps, beam equation

10" ¢ ‘ ‘ ‘ ——
10" |
S -7
5 -
g 10 - - - 7
g -7
] P
_ -
b
7
re
10° | Phd 7
—— FD/Crank-Nicolson |]
. — — Krylov/Gauss
10' > L L L L L L L L I-l ) ) ) ) ) ) ) .
10 10 10

time step

Figure 6.5: Estimates of relative error in the approximatedution w(x; 1) of the time-
dependent beam equation (6.16), (6.17), (6.18) computeding Crank-Nicolson with
nite di erencing (solid curve), and Gaussian quadrature (otted-dashed curve) with



142 CHAPTER 6. CONCLUSIONS

It should be easy to express partial derivatives of each in terms of functions
from the setf' ;g\, .

It is preferable, although not necessary, that the functionf’ jngzl should be
orthogonal with respect to the inner product

Z
H:gi = TfgdV: (6.20)

G

wheredV is the volume element ofG.

Given these conditions, it is easy to see that one could usegatithms 2.2 and 2.4 with
basis functions such as Chebyshev or Legendre polynomials piecewise continuous
polynomials. Future work will explore the use of such basisifictions. It should be
noted that this exibility can also be exploited to allow these algorithms to be used
for solving time-dependent systems of equations.

Problems with inhomogeneous boundary conditions can be rdlad in a manner
similar to that described in [43]. Problems with forcing tems can be addressed by
applying Duhamel's principle.

6.1.5 Time-dependent Coe cients

Consider a problem of the form

%Lgx;t)+ L(x;t;D)u(x;t)=0; 0O0<x< 2; t> 0 (6.21)
u(x;0)=f(x); 0<x< 2; (6.22)
ux;t) = u(x+2;t); t> 0; (6.23)

where the operatorL (x;t; D ) has the form

xn
L(x;t;D) = a (x;t)D : (6.24)
=0



6.1. EXTENSIONS 143

Algorithms 2.2 and 2.4 can be applied to problems of this fornBetween time steps,
the coe cients of L(x;t; D) can be re-evaluated at the current time in order to obtain
an approximate solution. In this case, it may be worthwhiled employ the algorithms
developed in Chapter 4 for updating Jacobi matrices, sincée quadrature rules of the
current time step can be viewed as perturbations of the ruldsom the previous time
step. A drawback to this approach is that it may be necessarytuse a signi cantly
smaller time step than in the case where the coe cients df (x;t; D ) are independent
of time.

6.1.6 Quasilinear Problems

The discussion of time-dependent coe cients applies to qdinear problems as well;
we can simply substitute the computed solution and evaluatéhe coe cients after
each time step. As an example, we attempt to solve Burger's wtion

%Lgx;t) + u(x;t)%ix;t) %(x;t) =0; 0O0<x< 2; t> 0 (6.25)
with initial condition
u(x;0)= E"fga(x); 0<x< 2; (6.26)
and boundary conditions
uO;t)=u(2;t)=0; t>0: (6.27)

Figure 6.6 compares the performance of the following meth®dpplied to this problem:
Crank-Nicolson with nite di erencing,
the Fourier method with MATLAB's ode23ssti solver, and
Algorithm 2.2, employing Gaussian quadrature with 2 nodes.

In all cases,N = 64 gridpoints are used. The convergence of Algorithm 2.2 m-
parable to that of the Fourier the other two methods, and sligtly more accurate for



144 CHAPTER 6. CONCLUSIONS

each time step used.

6.2 Representations of Solutions

Consider the problem (1.1), (1.2), (1.4). As discussed in @pter 1, the solution

u(x;t) of this problem has a simple representation in the case wieethe operator
L(x;D) has constant coe cients, given in (1.9). If the initial data f (x) satis es

f(1)=0for j! j >M for someM, then we obtain a closed-form solution that can
easily be evaluated at any point X;t).

If L(x; D) has variable coe cients, then no such representation is alable since we
do not know the eigenvalues and eigenfunctionslofx; D). Therefore, an approximate
solution computed using a standard time-stepping method dnprovides information
about the solution at each timet, = n t, wheren is a positive integer and t is
the chosen time step. As a result, interpolation is requiretb obtain a representation
that can be evaluated e ciently at an arbitrary point ( x;t).

On the other hand, using low-order Gaussian quadrature rigeto compute the
Fourier components of the approximate solution does prowdsuch a representation,
since the time step is not used to construct the quadrature hes. As such, the
approximate solutionu{x; t) has the representation

" #
1 NXZ 1 ) XA
HX;t) = p=— e wige o (6.28)
= N=2+1 j=1
where the ;; andw;, , ] =1;:::;M, jl ] < N=2, are the nodes and weights, re-

spectively, of the various quadratures rules employed by @drithm 2.2 or 2.4. These
nodes and weights depend on the initial daté(x) and the operatorL(x; D). Unlike
the representation (1.9) for constant-coe cient problemsthe formula (6.28) is only
valid for t within some interval, rather than for all time t, since the accuracy of the
Gaussian quadrature rules deteriorates dsincreases. The size of this interval can be
estimated using the procedures described in Chapter 4 fontestep selection.

One bene t of this representation ofu{x;t) is that it is possible to use automatic



6.2. REPRESENTATIONS OF SOLUTIONS

Relative error for varying time steps, Burger's equation

145

10" r \ \ \ ————
10-1f
S
@
(]
=
8
o
10° |
—— Crank-Nicolson |1
— — Fourier
. — - Gauss
10 2 : : : — ‘l : — :
10 10 10

time step

Figure 6.6: Estimates of relative error in the approximatedution w(x; 1) of Burger's
equation (6.25), (6.26), (6.27) computed using Crank-Nitson with nite di erenc-
ing (solid curve), the Fourier method with ode23s (dashed curve), and Gaussian
guadrature (dotted-dashed curve) withN = 64 nodes and various time steps.



146 CHAPTER 6. CONCLUSIONS

di erentiation to obtain a similar representation of @=@tthat can also be evaluated
at any point (x;t). We now discuss some ways in which this fact can be exploited

6.2.1 A Deferred Correction Algorithm

Consider a boundary-value problem of the form
L(x;D)u(x) = f(x); O0<x< 2; (6.29)

with boundary conditions (1.4), whereL (x; D) is an m-th order di erential operator
of the form

X @
L(x;D) = a(xb; D=—:
=0 @X

In the process of solving such a problem numerically, one capnstruct a discretization

(6.30)

C of L(x;D) and a corresponding approximationS to the exact solution operator
S(x; D) and carry out an iteration like the following in order to obtain an approximate
solution (x):
r@ = f
=0
for k=0;1;:::

gk = k)

t=t+ 4k

pe) = g

Now, consider a problem of the form (1.1), (1.2) with the samleoundary conditions
(1.4). As in the case of the boundary value problem (6.29), vean discretizeL (x; D)
to obtain C, and construct an approximate solution operatoiS(t) that can be used
to obtain an approximation &? (x;t) = S(t)f (x) to the solution u(x;t) for somet. It
is not as straightforward, however, to improve oru®@ (x;t) using an iteration similar
to (6.2.1). In this section we will present an approach to defred correction that can
be applied to problems of the form (1.1), (1.2) with various bundary conditions.
First, we will discuss the di culties in constructing an iteration of the form (6.2.1)
for initial-boundary value problems when using standard the-stepping methods, and



6.2. REPRESENTATIONS OF SOLUTIONS 147

show how the algorithms developed in Chapter 2 can be used tweccome these
di culties. Next, we will see how Duhamel's principle can beused to construct an
iteration for deferred correction. Finally, we will presennumerical results obtained
using our iteration.

Computing Residuals

In solving the boundary-value problem (6.29) using deferdecorrection, aresidual
r(x) = Lu(x) f(x) is computed whereu(x) is the approximate solution to (6.29).
If we wish to solve (1.1), (1.2) using a similar procedure, waill need to answer the
following questions:

1. What is an appropriate method of measuring the error in thénitial approxi-
mation & (x;t) to the solution u(x;t)?

2. How can this error measurement be used to improve the apgimation?

We now attempt to answer these two questions.
A natural choice of error estimate is an indication of how welthe computed
solution satis es the di erential equation,

Ru(X;t) = %t+ L(x; D)u(x;t): (6.31)

However, it is not necessarily a simple matter to compute thiresidual accurately,
as we will now illustrate with an example. Suppose that we ohin our approximate
solution using a nite-di erence method in conjunction with a semi-implicit time-
stepping scheme, such as the Crank-Nicolson method,

t t
|+ —C w(x; )= | —C f(x); (6.32)

2 2
where C is a discretization ofL(x;D). In computing Ru(x; t), it is clear that we
will introduce discretization error in both space and time;in fact, to obtain any
approximate residual we will need to compute approximate kdions at other times

besides t. Unfortunately, in order for an iteration of the form (6.2.]) to be e ective,



148 CHAPTER 6. CONCLUSIONS

we need the residual to be measured as accurately as possil#iea minimum, it is
desirable to eliminate any temporal discretization error.Much work has been done
to develop deferred correction methods by working around ih di culty in various
ways, see for instance [33]. Our goal is to develop a defermaatrection procedure
that is, conceptually, more straightforward.

Using Algorithms 2.1 and 2.2, we will see that it is possibleoteliminate temporal
discretization error. From these algorithms, we see that fe@ach wave numbet , the
componentuf!;t ) has the form

XK
w(it)=  gexpl i (6.33)
i=1
where the constantsc; are determined by the weights of the quadrature rules used
to compute u(!;t ). It follows that we not only have obtained u{x;t), but also a
representation ofufx;t) that can be evaluated atany time t. Furthermore, it is
trivial to obtain @=@¢for

ex(;t) X
@t

G jexp[ jtl: (6.34)
j=1

Thus the residualRy(x; t) can be evaluated at any time without temporal discretiza-
tion error.

Duhamel's Principle and Backward Error Analysis

Now that we have obtained an accurate residual, we will exame how it can be
exploited in this section by employing backward error anaklis to determine what
problem our approximate solution has solved. We rst compu our initial approxi-
mation & (x;t) and then compute

@O
@t

R0 (X;t) = + L(x; D)@ (x;1): (6.35)



6.2. REPRESENTATIONS OF SOLUTIONS 149

Then &9 (x;t) is a solution of the inhomogeneous problem

%lgx;th L(x;D)u(x;t) = Ryo (X;t); O0<x< 2; t> 0 (6.36)

ux;0)=f(x); 0<x< 2; (6.37)

with boundary conditions (1.4). By Duhamel's principle, ths problem has the solution
Z t
ui;t)=exp[ LOGD)f(x)+  exp[ LOGD)(t  )IRso (x; )d:  (6.38)
0
However, the rst term in (6.38) is the exact solution to our @iginal problem (1.1),
(1.2). Therefore, if we can compute the second term with suient accuracy, we can
improve our approximate solutionu® (x;t) by computing

X
e (x;t) = 4@ (x; 1) exp[ LOGD)(t  t)]Ryo (X ti) Wi (6.39)
k=1
where the nodesy and weightswy are determined by arM -point Gaussian quadrature
rule, and exp[ L(x;D)(t tx)]R4o (X;tk) is computed using Algorithms 2.1 and 2.2.
We now summarize the entire procedure for making a single cection.

Algorithm 6.1 Given a self-adjoint di erential operator L(x; D), initial data f (x),
and a time tsi,a , the following algorithm computes an initial approximatian & (x; t)
to the solution u(x;t) of (1.1), (1.2), (1.4) and an improved approximationu®) (x;t).
Both approximations are evaluated at timetsiny -

Compute u (x; tsina ) Using Algorithm 2.2, saving
all nodestj( ) and Weightswj( ) of quadrature rules used
to compute each Fourier componenta(®;t) of & ;t)
Compute nodest; and weightsw;, j = 1;:::; M, for Gaussian
quadrature on the interval [Q tfina ]
(for details see [41])

e(x) = 0



150 CHAPTER 6. CONCLUSIONS

Compute vi(x) = @? =@tevaluated at timet;
Compute vo(x) = L(x; D)&@(x;t;)
SetRyo (X;tj) = va(X)  Va(X)
Compute an approximationR;(x) to S(X;D;tfina  tj)Ruo (X tj)
e(x) = e(x) + W R (x)
end
e (X; thina ) = 4O (X tina ) &(x)

It is possible to use a similar approach to correct®(x;t), but in this case it is
necessary to save the quadrature rules used to compute eaelm of e(x). Therefore,
computing the residualR,u (X;t) is much more expensive. It is more e cient to use
more quadrature nodes for a single correction, as opposedusing fewer nodes for
multiple corrections.

Numerical Results

Now we present the results of applying Algorithm 6.1 to the mblems featured in
Sections 5.2 and 5.3. Figure 6.7 illustrates the e ect of ugy a single correction with
2 nodes on Algorithm 2.2. In both cases, using a Gaussian ralea Gauss-Radau rule
to compute Fourier components of the solution, the correain provides signi cantly
more accuracy.

Earlier it was shown that in cases where the coe cients of th@perator L(x;D)
are not smooth, or if the initial dataf (x) is not smooth, that computed solutions were
less accurate. We now test whether correction can provide emedy. Figures 5.4 and
6.8 show how correction can help in the case where the coe ais of L(x; D) are not
as smooth; clearly correction is very helpful. Figures 5.5d 6.9 show that correction
provides marked improvement in the case of coe cients with igher amplitude; the
extremely poor accuracy for higher timesteps has been ail@ed. Finally, Figures 5.6
and 6.10 illustrate the usefulness of correction with iniéil data of varying smoothness;
again the accuracy is signi cantly improved.



6.2. REPRESENTATIONS OF SOLUTIONS 151

Convergence with and without correction (Gaussian rule)
10 ‘ ‘ ‘ —— : :

[y
o
N
T

relative error
[
o|
5
T

&

10" |
— without
. — — with
10» -2 ‘ ‘ ‘ ‘ ‘ ‘ ‘-1 ‘ ‘ ‘ — 0
10 10 10
time step
o Convergence with and without correction (Gauss-Radau rule)
10 ‘ ‘ ‘ —— : : :
S
2]-) -5
L10° |
8
o
— without
" — — with
lo- -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-1 ‘ ‘ ‘ — 0
10 10 10

time step

Figure 6.7: Estimates of relative error in the approximatedution t(x;t) of problem
(5.11), (5.12), (5.13) att = 1 computed with correction, using Algorithm 6.1 (dashed
curve), and without correction, using Algorithm 2.2 (solidcurve). In all caseN = 64



152 CHAPTER 6. CONCLUSIONS

Convergence for operators of varied smoothness (Gaussian rule)

A

relative error
[
o
T

10° |
10-8 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-l ‘ ‘ 0
10 10 10
time step
o Convergence for operators of varied smoothness (Gauss-Radau rule)
10 ‘ ‘ ‘ —— : : : :

&

relative error
=
o
T

10 . . e

107 10™ 10
time step

10

Figure 6.8: Estimates of relative error in the approximatedution w(x;t) of (5.14),
(5.15), (5.16) att = 1. Solutions are computed using Algorithm 6.1 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.



6.2. REPRESENTATIONS OF SOLUTIONS 153

Convergence for operators of varied amplitude (Gaussian rule)
10 ‘ ‘ ‘ —— : : :

relative error
[
on
5
T

&

10" |
10»8 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-l ‘ 0
10 10 10
time step
o Convergence for operators of varied amplitude (Gauss-Radau rule)
10 ‘ ‘ ‘ —— : : :

relative error
=
o|
(9]
T

10 ) ) ) ) ) ) ) L1 -
107 10 10
time step

10

Figure 6.9: Estimates of relative error in the approximate aution t(x;t) of (5.17),
(5.18), (5.19) att = 1. Solutions are computed using Algorithm 6.1 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.



154 CHAPTER 6. CONCLUSIONS

Convergence for initial data of varied smoothness (Gaussian rule)

10 : ‘ ‘ ——
510"
@
[
=
E 6
210" |
10-8 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-l ‘ 0
10 10 10
time step
s Convergence for initial data of varied smoothness (Gauss-Radau rule)
10 ‘ ‘ ‘ —— : : : :
510°
@
(]
=
E 5
210" |
10_10 -2 ‘ ‘ ‘ ‘ ‘ ‘ — ‘-l ‘ 0
10 10 10

time step

Figure 6.10: Estimates of relative error in the approximateolution e(x; t) of (5.20),
(5.21), (5.22) att = 1. Solutions are computed using Algorithm 6.1 with 2 Gausan
guadrature nodes, with various time steps antll = 64 grid points.



6.2. REPRESENTATIONS OF SOLUTIONS 155

6.2.2 Weak Solutions of Wave Equations

Let L(x;D) be anm-th order self-adjoint di erential operator of the form (1.3). We
consider a problem of the form

@;(x;t)+ Ls(x;D)u(x;t)=0; 0O<x< 2; t> 0 (6.40)

@

with initial conditions

u(x; 0) = E* fo3(x); %lgx; 0)=E"f13(x); 0<x< 2; (6.41)

and periodic boundary conditions. In particular, ifL(x; D) is a second-order operator,
then this problem is a variable-coe cient form of the telegaph or wave equation.
In order to solve such a problem numerically, one of three apgaches can be taken:

Approximate eigenfunctionsf My (x)gi., of L(x;D) are computed, and the so-
lution is represented using an eigenfunction expansion
P
u(x;t) = U ()M (X);  uk(t) = hu(;t); Myi: (6.42)
k=1
Given the eigenvalues (gi_, of L(x;D), the coe cient functions u(t) can
easily be determined, as they each satisfy an ODE

% = kW(t); t>0; (6.43)

with initial conditions
ue(0) = f; fe=H;Myi; k=1;::: (6.44)
Up0) = g G = hg;Mii; k=1;::: (6.45)

For eachk, this problem has the solution (see [43])

Uk (t) = fkcosF R pl:gk sinfO Tl (6.46)
k



156

CHAPTER 6. CONCLUSIONS

Of course, one must obtain the eigenvalues and eigenfunctsoof L(x;D) in
order to use this approach; this can be accomplished using tmeds described
in [34].

We can introduce a new dependent variable

v(x;t) = %ltzx;t); (6.47)
which yields the rst-order system
t# " #
@ u v
— = : 6.48
@t v L(x;D)u (6.48)

A number of di culties arise from this approach (see [32]):

{ Two variables must be computed,

{ The number of grid points must be doubled in both space and tiento
obtain the same accuracy as with a nite di erence method thasolves
the problem directly,

{ Since there are no boundary conditions for, one must supply extrapola-
tion conditions. This can be done, but it is possible to intrduce instabil-
ities (see [27]).

{ If the solution is not properly resolved, then one creates spous waves
which travel in the wrong direction (see [4]).

In [32], Kreiss, Petersson, and Ystrem discuss various te-di erence methods
for solving the wave equation directly without converting i to a rst-order
system.

We will use an approach developed in [25] that is similar to #t of eigenfunction ex-

pansions to develop an algorithm for solving (6.40), (6.41)sing Gaussian quadrature

rules, without having to compute eigenvalues and eigenfutans.



6.2. REPRESENTATIONS OF SOLUTIONS 157

From the determination of the coe cient functions ug(t) above, it is easy to show
that if L(x;D) is invertible, and if the functions f (x) and g(x), as well as the coe -
cients ofL(x; D), are all C* functions, then

u(x;t) = cos[p L(x;D)t]f (x) +[L(x;D)] *? sin[p L (x; D)t]g(x): (6.49)

Note that if L(x;D) is not invertible, then its pseudo-inverse can be used iresd.
Using this representation of the solution, we can easily cqmte Fourier components
of an approximate solution using Gaussian quadrature. Thenty modi cations we
need to make to Algorithm 2.2 are:

1. We need to apply a variation of Algorithm 2.2 to the initial data f (x), using
the integrand s;( ) = cos(  t), and also to the initial data g(x), using the
integrand s,( ) = eLsin(  t).

2. After each time step, we need to employ the quadrature ruieusped to com-
pute u(x;t+ t) to obtain %Kx;t + t), using integrands = sin(  t)and
cos t). This technique is analogous to the one used earlier to ola@ u=@t
in order to compute the residual of the approximate solution

For such problems, it is important to note that the integrand are oscillatory over
the interval of integration, and that the oscillation increases with t. Therefore, in a
practical implementation in which functions are discretied using anN -point uniform
grid of the form (2.42), it is recommended that the time step t be chosen so that
N t 1. This condition can be relaxed if the coe cients ofL(x; D) are reasonably
smooth, in which case most of the oscillations of the integnd are damped by the
weight function of the integral. Figure 6.11 provides a congrison of Algorithm 2.2
with the nite-di erence scheme

2
un+1 2u"+ u" 14 TtA un+1 +u" 1 =0: (6.50)
where A is a matrix representing a nite-di erence discretization of L(x;D) and
u", for each integern, is a gridfunction denoting the approximate solutionufx;t,)

with t, = n t. Even though no preconditioning is applied toL(x;D) to obtain



158 CHAPTER 6. CONCLUSIONS

these results, Gaussian quadrature methods perform quiteelveven when t is large
comparedto x=2 =N.

Algorithm 2.2 also performs quite well in the case whele(x; D) has discontinuous
coe cients, and the initial data f (x) and g(x) are discontinuous. To see this, we apply
these algorithms to the problem

% D %H(x )Du +%H(x Ju; 0<x< 2; t> 0 (6.51)
u(x;0) = E"fgo(x); 0<x< 2; (6.52)
u(x;t)=u(x+2;t); t>0: (6.53)

Figure 6.12 compares the convergence of Algorithm 2.2 witthe nite-di erence
method (6.50) for this problem.

6.3 Future Directions

It is the author's opinion that the ideas presented in this tkesis have yet to be fully
explored, and that the resulting solution methods and preculitioning techniques can
be improved upon. In this section, we discuss some avenuesngprovement, as well
as possible applications to other problems that have not ydteen discussed.

6.3.1 Eigenfunctions of Di erential Operators

The preconditioning techniques developed in Chapter 3 regsent a rst attempt at

solving the very di cult problem of smoothing the coe cient s of variable-coe cient

operators via similarity transformations. Future work is ntended along various di-
rections. One such direction is the construction of more p@nful canonical transfor-
mations for use with Egorov's theorem, including transfor@tions that do not arise
from a coordinate transformation of the formy = (x). Another direction is the gen-
eralization of the operator described in Chapter 4 to pseudodi erential opetars

with coe cients of negative order; this is possible using itegration by parts.



6.3. FUTURE DIRECTIONS 159

Relative error for varying time steps, second-order wave equation
107 ¢ ‘ ‘ ——— ‘ ‘ ‘

relative error
N
\

—— Kreiss, et al.
— — Gauss ]
— - Gauss-Radau |1

ZI.O-10 ! ! ‘ ‘ ———

10 10" 10
time step

0

Figure 6.11: Estimates of relative error in the computed safion t(x;t) to (6.40),

(6.41), (1.4) att = 1. Solutions are computed using the nite di erence schem¢5.50)

(solid curve), Algorithm 2.2 with Gaussian quadrature (dalsed curve) and Algorithm
2.2 with Gauss-Radau quadrature (dotted-dashed curve) viitvarious time steps and
N =64 grid points. In both instances of Algorithm 2.2,K =2 Gaussian quadrature
nodes are used.



160 CHAPTER 6. CONCLUSIONS

Relative error for varying time steps, discontinuous data, hyperbolic problem

10" : : : —
10° F
107 F
S
o
(]
=
8
o
10% F
10_3 a3
—— Kreiss, et al.
— — Gauss i
. — - Gauss-Radau
10 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘l ‘ ‘ ‘ ‘ ‘ ‘ 0
10 10 10

time step

Figure 6.12: Estimates of relative error in the computed sation t(x;t) to (6.51),

(6.52), (6.53) att = 1. Solutions are computed using the nite di erence method
(6.50) (solid curve), Algorithm 2.2 with Gaussian quadratte (dashed curve) and
Algorithm 2.2 with Gauss-Radau quadrature (dotted-dashedurve) with various time

steps andN = 64 grid points. In both instances of Algorithm 2.2,K = 2 Gaussian
guadrature nodes are used.



6.3. FUTURE DIRECTIONS 161

As we have seen, one application of these preconditioninghaiques is that they
can be used to nd approximate eigenvalues and eigenfunati® of di erential opera-
tors. It is possible that a modi cation of the transformations may yield an approxi-
mate diagonalization. Speci cally, if we represent an opator L(x;D) as a series of

the form @
L(x;D) = axX)b+ 1); (6.54)
=1
where each is a real nonzero constant, thed + | is nonsingular, and
kD+ 1) k= % (6.55)

Therefore, we can apply the techniques outlined in Section33to eliminate variable
coe cients, and if the remaining variable-coe cient porti on ofL(x; D) decays in some
sense, then an approximate diagonalization can be achievékhe discussion in Section
3.5 only prescribes how the leading coe cient of (3.53) is tbe determined. As such,
a subject of future research is the determination of the lowerder coe cients in
(3.53), and a set of \optimal" shifts that yields an approximate diagonalization using
as few transformations as possible.

Such an approximate diagonalization can be used to e ciengl compute an ap-
proximate solution to boundary-value problems of the fornb(x; D)u = f, or initial-
boundary value problems such as (5.27), (5.28). In the lattease, no timestep is re-
quired, thus e ectively generalizing the Fourier method dscribed in [27] to variable-
coe cient problems. In practice, such an approximate solubn would need to be
corrected, but this can be accomplished using the technicgideveloped earlier in this
section. Alternatively, the approximate eigenfunctions gnerated by our precondi-
tioning techniques can be improved using Jacobi rotations.

6.3.2 Inverse Problems

The discussion in Section 4.1 suggests that one can obtairformation about the
coe cients of an unknown di erential operator L(x;D) given the Jacobi matrices



162 CHAPTER 6. CONCLUSIONS

Jk . These matrices can easily be computed with knowledge of theoments
| = hu;L(x; D) vi; (6.56)

where the functionsu(x) and v(x) de ne a measure such thatmu; is a valid Riemann-
Stieltjes integral. Since this measure is constructed frothme eigenvalues and eigen-
functions of L(x; D), it is useful to investigate whether Gaussian quadratureutes
can be helpful in solving inverse eigenvalue problems forugin-Liouville operators.
Alternatively, [24] describes a numerically stable algahm for reconstructing Jacobi
matrices directly from the nodes and weights of the correspding Gaussian quadra-
ture rule.

6.4 Summary

By reconsidering the role of numerical quadrature in Galeik methods, we have suc-
ceeded in developing an e cient numerical method for solvip the problem (1.1),
(1.2), (1.4) that provides a simple representation of the eoputed solution as a func-
tion t(x;t). As a result, some of the same bene ts of spectral methods @jed to
constant-coe cient problems can be made available to varlae-coe cient problems.

In addition, we have managed to apply the ideas of Fe erman @hEgorov to
develop practical similarity transformations of di erential operators to obtain new
operators with smoother coe cients, along with good approxnations of eigenvalues
and eigenfunctions of these operators.

With future research along the directions established in ik thesis, it is hopeful
that more e cient solution methods for time-dependent varable-coe cient problems,
as well as a deeper understanding of the eigensystems ofakle-coe cient di erential
operators, can be realized



Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques and Tools
(1988) Addison-Wesley.

[2] A. Bprck, \Solving Linear Least Squares Problems by Gam-Schmidt Orthogo-
nalization", BIT 7 (1967), p. 1-21.

[3] J. P. Boyd, Chebyshev and Fourier Spectral Methad2nd. Ed. (2001) Dover.

[4] G. Browning, H.-O. Kreiss, J. Oliger, \Mesh Re nement", Math. Comp. 27
(1973), p. 29-39.

[5] D. Calvetti, G. H. Golub, W. B. Gragg, L. Reichel, \Computation of Gauss-
Kronrod quadrature rules”, Math. Comp. 69 (2000), p. 1035-1052.

[6] S. J. Cox, \Recovering the passive properties of taperetkendrites from single
and dual potential recordings”, in preparation.

[7] G. Dahlquist, S. C. Eisenstat and G. H. Golub, \Bounds fothe error of linear
systems of equations using the theory of momentsJ. Math. Anal. Appl. 37
(1972), p. 151-166.

[8] P. Davis, P. Rabinowitz, Methods of numerical integration 2nd Ed. (1984) Aca-
demic Press.

[9] J. V. Egorov, \Canonical Transformations and Pseudodierential Operators”,
Trans. Moscow Math. Soc24 (1975), p. 1-28.

163



164 BIBLIOGRAPHY

[10] C. Fe erman \The Uncertainty Principle” Bull. Amer. Math. Soc. 9 (1983), p.
129-206.

[11] W. Gautschi, \Construction of Gauss-Christo el quadature formulas”, Math.
Comp. 22 (1968), p. 251-270.

[12] W. Gautschi, \Orthogonal polynomials: applications ad computation”, Acta
Numerica 5 (1996), p. 45-120.

[13] W. Gautschi, \The interplay between classical analysiand (numerical) linear
algebra{A tribute to Gene H. Golub", Electron. Trans. Numer. Anal. 13 (2002),
p. 119-147.

[14] G. H. Golub, private communication.

[15] G. H. Golub, \Some modi ed matrix eigenvalue problems"SIAM Review 15
(1973) p. 318-334.

[16] G. H. Golub, \Bounds for matrix moments”, Rocky Mnt. J. of Math. 4 (1974),
p. 207-211.

[17] G. H. Golub, M. H. Gutknecht, \Modi ed Moments for Inde nite Weight Func-
tions", Numer. Math. 57 (1989), p. 607-624.

[18] G. H. Golub, J. Kautsky, and S. Elhay, \Jacobi matrices dr sums of weight
functions”, BIT 32, p. 143-166.

[19] G. H. Golub, C. Meurant \Matrices, Moments and Quadratue"”, Stanford Uni-
versity Technical Report SCCM-93-07, 1993

[20] G. H. Golub, R. Underwood, J. H. Wilkinson, \The Lanczo%Algorithm for the
SymmetricAx = Bx Problem", Report STAN-CS-72-270, Department of Com-
puter Science, Stanford University, Stanford, Californial972.

[21] G. H. Golub, C. F. van Loan,Matrix Computations, 3rd Ed. (1996) Johns Hop-
kins University Press.



BIBLIOGRAPHY 165

[22] G. H. Golub, J. Welsch, \Calculation of Gauss Quadratwe Rules”, Math. Comp.
23 (1969), p. 221-230.

[23] J. Goodman, T. Hou, E. Tadmor, \On the stability of the ursmoothed Fourier
method for hyperbolic equations”,Numer. Math. 67 (1994), p. 93-129.

[24] W. B. Gragg, W. J. Harrod, \The Numerically Stable Recoatruction of Jacobi
Matrices from Spectral Data", Numer. Math. 44 (1984), p. 317-335.

[25] P. Guidotti, private communication.

[26] P. Guidotti, K. Solna, \1D analysis of wave propagatiorin inhomogeneous and
random media", in preparation.

[27] B. Gustafsson, H.-O. Kreiss, J. Oligefime-Dependent Problems and Di erence
MethodsNew York: Wiley, 1995

[28] M. Hochbruck, C. Lubich, \On Krylov Subspace Approxim&ons to the Matrix
Exponential Operator”, SIAM J. Numer. Anal. 34 (1996), p. 1911-1925.

[29] L. Hermander, \Pseudo-di erential operators”, Comm. Pure Appl. Math. 18
(1965), p. 501-517.

[30] C. Johnson,Numerical solutions of partial dierential equations by tle nite
element methogd Cambridge University Press, 1987.

[31] J. J. Kohn, L. Nirenberg, \An Algebra of Pseudo-Di erenial Operators", Comm.
Pure Appl. Math. 18 (1965), p. 269-305.

[32] H.-O. Kreiss, N. A. Petersson, J. Ystem, \Di erence Approximations for the
Second Order Wave Equation"SIAM J. Numer. Anal. 40 (2002), p. 1940-1967.

[33] W. Kress, B. Gustafsson, \Deferred Correction Methodfor Initial Boundary
Value Problems"”, Journal of Scienti c Computing 17 (2002), p. 241-251.

[34] O. E. Livne, \Multiscale Eigenbasis Algorithms"”, Ph.D Thesis, Weizmann In-
stitute of Science, Rehovot, 2000.



166 BIBLIOGRAPHY

[35] C. C. Paige, \Practical Use of the Symmetric Lanczos Pcess with Reorthogo-
nalization", BIT 10 (1970), p. 183-95.

[36] B. N. Parlett, D. S. Scott, \The Lanczos Algorithm with Selective Orthogonal-
ization", Math. Comp. 33 (1979), p. 217-38.

[37] J. R. Rice, \Experiments on Gram-Schmidt Orthogonaliation", Math. Comp.
20, p. 325-28.

[38] R. A. Sack, A. F. Donovan \An Algorithm for Gaussian Quadature given Mod-
i ed Moments”, Numer. Math. 18 (1971/72), 465-478.

[39] P. E. Saylor, D. C. Smolarski, \Why Gaussian quadraturen the complex
plane?", Numerical Algorithms 26 (2001), p. 251-280.

[40] H. Simon, \Analysis of the Symmetric Lanczos Algorithmwith Reorthogonal-
ization Methods", Lin. Alg. and Its Applic. 61 (1984), p. 101-132.

[41] J. Stoer, R. Burlisch, Introduction to Numerical Analysis, 2nd Ed. (1983)
Springer-Verlag.

[42] G. Szego, \Orthogonal Polynomials”, 3rd. Ed. (1974Amer. Math. Soc.

[43] E. Zauderer,Partial Di erential Equations of Applied Mathematics New York:
Wiley, 1989



