
KRYLOV SUBSPACE METHODS FOR

VARIABLE-COEFFICIENT INITIAL-BOUNDARY VALUE

PROBLEMS

a dissertation

submitted to the program in scientific computing and computa tional

mathematics

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

James Lambers

September 2003

c Copyright by James Lambers 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Gene H. Golub
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Margot G. Gerritsen

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Joseph B. Keller

Approved for the University Committee on Graduate

Studies:

iii

Abstract

The design and analysis of numerical methods for the solution of partial di�erential

equations of the form @u
@t(x; t) + L(x; D)u(x; t) = 0, where the di�erential operator

L(x; D) has constant coe�cients, is greatly simpli�ed by the fact that, for many

methods, a closed-form representation of the computed solution as a function of

x and t is readily available. This is due in large part to the fact that for such

methods, the matrix that represents a discretization ofL(x; D) is diagonalizable, and

the eigenvalues and eigenfunctions of this matrix are known. For variable-coe�cient

problems, however, this simpli�cation is not available.

This thesis presents an alternative approach to the solution of this problem in

the variable-coe�cient case that leads to a new numerical method, called a Krylov

subspace method, for which the computed solution can easilybe represented as a

function of x and t. The method makes use of Gaussian quadrature in the spectral

domain to compute Fourier components of the solution. For each component, a dif-

ferent approximation of the solution operator by a restriction to a low-dimensional

Krylov subspace is employed, and each approximation is optimal in some sense for

computing the given component. The computed solution can beanalytically di�er-

entiated with respect to time, resulting in new approaches to deferred correction and

the solution of PDE that are second-order in time such as the telegraph equation.

As the Krylov subspace method is more e�ective for problems where the operator

L(x; D) has smooth coe�cients, approaches to preconditioning di�erential opera-

tors using unitary similarity transformations are presented. These preconditioning

techniques are based on the use of the uncertainty principleby Fe�erman to obtain

approximate diagonalizations of self-adjoint di�erential operators.

iv

Acknowledgements

This dissertation is the conclusion of what has been an extremely long journey, one

that I could not have completed alone.

First of all, I would like to thank Margot Gerritsen, for standing with me every

step of the way.

My family, for leaving the light on for me until I could �nally come home.

Dianna Foster, for love, friendship and support without which no undertaking of

this magnitude could ever succeed. I love you.

From Purdue University: John Rice and Richard Penney, for getting me started

and giving me the opportunity to see how ful�lling mathematics can be. From Stan-

ford: Joe Oliger, my original advisor, for the opportunity to take on such a stimulating

challenge; Joseph Keller, Persi Diaconis, Eric Darve, and Doron Levy, for challenging

my work at every turn and making me realize how strongly I believed in what I was

doing; my friends, Maureen Doyle and Doug Enright, for sharing the joy and pain as

I did with you; Oren Livne, for believing in me more than I believed in myself. From

UC Irvine: Patrick Guidotti and Knut S�lna, for validating m y work and showing me

its full potential. From Sandia: Tammy Kolda, for helping memake a presentation

worth seeing.

My friends who have made life's journey worthwhile: From Starbase, Joan Isen-

barger, Gylver Wagnon, Ava Fanelli and Scott Hunter, for never letting me forget

what was most important; Laila Schlack, for the tree we planted; John Salapski,

Gabrielle Martin, Tia Starr, and, of course, Ashley!

Finally, I wish to thank Gene Golub, for giving me the opportunity to come to

Stanford{twice.

v

This thesis is dedicated

to the memory of

Soren S. Jensen

(1956-1997)

vi

Contents

Abstract iv

Acknowledgements v

vi

1 Introduction 1

1.1 Closed-Form Representations of Solutions 2

1.1.1 Spectral Methods . 4

1.1.2 Finite Di�erence Methods . 5

1.1.3 Variable-Coe�cient Problems 7

1.2 The Proposed Alternative . 9

1.2.1 Generalizing the Fourier Method 11

1.2.2 The Uncertainty Principle and Preconditioning 12

1.3 Outline . 16

1.4 Notation . 16

2 Krylov Subspace Methods 18

2.1 Introduction . 18

2.2 Moments and Quadrature . 20

2.2.1 The caseu = v . 22

2.2.2 The caseu 6= v . 23

2.2.3 Gauss-Radau Quadrature Rules 25

2.3 Formulation . 26

vii

2.4 Convergence Analysis . 29

2.4.1 Fourier Series and Trigonometric Interpolation 30

2.4.2 Application of Di�erential Operators 31

2.4.3 The Modi�ed Algorithms . 33

2.4.4 Consistency . 36

2.4.5 Stability . 43

2.4.6 Convergence . 43

2.4.7 Summary . 44

3 Preconditioning 50

3.1 The Uncertainty Principle . 50

3.2 Egorov's Theorem . 56

3.3 Symbolic Calculus . 57

3.3.1 Basic Rules of Symbolic Calculus 58

3.3.2 The Pseudo-Inverse of the Di�erentiation Operator 59

3.4 Local Preconditioning . 62

3.5 Global Preconditioning . 64

3.5.1 Non-Normal Operators . 72

3.6 Summary . 72

4 Implementation 73

4.1 Symbolic Lanczos Iteration . 73

4.1.1 A Simple Example . 74

4.2 An Abstract Data Type for Lanczos Vectors 76

4.2.1 Data Structure . 76

4.2.2 Operations . 77

4.3 Construction of Approximate Solutions 82

4.3.1 Computation of Jacobi Matrices 83

4.3.2 Updating of Jacobi Matrices 84

4.3.3 Obtaining and Using Quadrature Rules 90

4.4 Preconditioning . 91

4.4.1 Simple Canonical Transformations 91

viii

4.4.2 Eliminating Variable Coe�cients 92

4.4.3 Using Multiple Transformations 93

4.5 Other Implementation Issues . 94

4.5.1 Parameter Selection . 94

4.5.2 Reorthogonalization . 97

4.6 Summary . 97

5 Numerical Results 99

5.1 Construction of Test Cases . 99

5.2 Timestep Selection . 104

5.3 Smoothness of Coe�cients . 104

5.4 Component Analysis . 110

5.5 Selection of Quadrature Nodes .114

5.6 Preconditioning . 114

5.7 Approximating Eigenfunctions .. 125

5.8 Performance . 125

5.9 Long-Term Evolution . 130

6 Conclusions 132

6.1 Extensions . 132

6.1.1 Problems in Higher Space Dimensions 132

6.1.2 Non-Self-Adjoint Operators 133

6.1.3 Higher-Order Operators . 137

6.1.4 Other Boundary Conditions 140

6.1.5 Time-dependent Coe�cients 142

6.1.6 Quasilinear Problems . 143

6.2 Representations of Solutions .. 144

6.2.1 A Deferred Correction Algorithm 146

6.2.2 Weak Solutions of Wave Equations 155

6.3 Future Directions . 158

6.3.1 Eigenfunctions of Di�erential Operators 158

6.3.2 Inverse Problems . 161

ix

6.4 Summary . 162

Bibliography 163

x

List of Tables

5.1 Performance data for Crank-Nicolson, Gauss and Gauss-Radau meth-

ods applied to (5.11), (5.12), (5.13) withN = 256 gridpoints 129

5.2 Performance data for Algorithm 2.2 with 3-point Gauss-Radau rule

(v(x; t)), and method of eigenfunction expansions (u(x; t)), applied to

(1.1), (1.2), (1.4) with L(x; D) de�ned to be the second-order self-

adjoint positive de�nite operator L3(x; D) de�ned in Section 5.1. N =

64 gridpoints are used in all cases. 131

xi

List of Figures

1.1 Symbol of a constant-coe�cient operatorL(x; D) = D 2 � 1 14

1.2 Symbol of a variable-coe�cient operatorL(x; D) = D((1+ 1
2 sinx)D) �

�
1 + 1

2 sinx
�

. 15

3.1 Symbol of a constant-coe�cient operatorA(x; D) = D 2 � 1 52

3.2 The volume of the setsS(A; K), as de�ned in (3.4), whereA(x; D) =

D 2 � 1 and K = � j (A) for j = 1; : : : ; 32. The top �gure plots the

volume ofS(A; � j) as a function ofj , and the bottom �gure plots the

change in volume between consecutive eigenvalues. 53

3.3 Symbol of a variable-coe�cient operatorA(x; D) = D((1+ 1
2 sinx)D) �

�
1 + 1

2 sinx
�

. 54

3.4 Volume of the setsS(A; K) where A(x; D) = D
��

1 + 1
2 sinx

�
D

�
�

�
1 + 1

2 sinx
�

and K = � j for j = 1; : : : ; 32. The top �gure plots the

volume ofS(A; � j) as a function ofj , and the bottom �gure plots the

change in volume between consecutive eigenvalues. 55

3.5 Local preconditioning applied to operatorL(x; D) with � 0 = 4 to ob-

tain new operatorL(y; D). 65

3.6 Local preconditioning applied to operatorL(y; D) from Figure 3.5,

with � 0 = 16. 66

5.1 Functions from the collectionf j;k (x), for selected values ofj and k. . 101

5.2 Functions from the collectiongj;k (x; y), for selected values ofj and k. 102

xii

5.3 Estimates of relative error in the computed solution ~u(x; t) of (5.11),

(5.12), (5.13) at t = 1. Solutions are computed using �nite di�er-

ences with Crank-Nicolson (solid curve), Algorithm 2.2 with Gaus-

sian quadrature (dashed curve), and Algorithm 2.2 with Gauss-Radau

quadrature (dotted-dashed curve) with various time steps and N = 64

grid points. 105

5.4 Estimates of relative error in the approximate solution~u(x; t) of (5.14),

(5.15), (5.16) at t = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 106

5.5 Estimates of relative error in the approximate solution~u(x; t) of (5.17),

(5.18), (5.19) at t = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 108

5.6 Estimates of relative error in the approximate solution~u(x; t) of (5.20),

(5.21), (5.22) at t = 1. Solutions are computed using Algorithm 2.2

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 109

5.7 Estimates of relative error in the approximate solution~u(x; t) to (5.23),

(5.24), (5.25) at t = 1. Solutions are computed using �nite di�er-

ences with Crank-Nicolson (solid curve), the Fourier method (dotted

curve), Gaussian quadrature (dashed curve) and Gauss-Radau quadra-

ture (dotted-dashed curve) with various time steps andN = 64 grid

points. 111

5.8 Approximate solutions of (5.23), (5.24), (5.25) computed using the

�xed-grid and variable-grid methods from Section 4.2. In both cases,

N = 64 gridpoints are used to represent the approximate solutions,

and � t = 1=64. 112

5.9 Relative error estimates in �rst and second derivativesof approximate

solutions to (5.11), (5.12), (5.13), measured using theH 1 and H 2 semi-

norms, respectively. In all casesN = 64 gridpoints are used. 113

xiii

5.10 Relative error estimates in approximate solutions of (5.11), (5.12),

(5.13) computed using Gaussian quadrature withK = 2; 3; 4 nodes.

In all casesN = 64 gridpoints are used, with time steps �t = 2 � j for

j = 0; : : : ; 6. 115

5.11 Plot of relative error estimates versus execution timein computing ap-

proximate solutions of (5.11), (5.12), (5.13) using Gaussian quadrature

with K = 2; 3; 4 nodes. In all casesN = 64 gridpoints are used, with

time steps � t = 2 � j for j = 0; : : : ; 6. 116

5.12 Symbol of original variable-coe�cient operatorP(x; D) de�ned in (5.10)117

5.13 Symbol of transformed operatorA(x; D) = U� P(x; D)U whereP(x; D)

is de�ned in (5.10) and U is chosen to make the leading coe�cient of

A(x; D) constant. 118

5.14 Symbol of transformed operatorB(x; D) = Q� U� L(x; D)UQ where

P(x; D) is de�ned in (5.10) and the unitary similarity transformations

Q and U make B(x; D) a constant-coe�cient operator modulo terms

of negative order. 119

5.15 Estimates of relative error in the approximate solution ~u(x; t) of (5.27),

(5.28), (5.29) at t = 1, computed using no preconditioning (solid

curve), a similarity transformation to make the leading coe�cient of

A(x; D) = U� P(x; D)U constant (dashed curve), and a similarity trans-

formation to make B(x; D) = Q� U� P(x; D)UQ constant-coe�cient

modulo terms of negative order. In all casesN = 64 grid points are

used, with time steps � t = 2 � j for j = 0; : : : ; 6. 121

5.16 Relative error in frequency components with and without preconditioning122

5.17 Estimates of relative error in the approximate solution ~u(x; t) of (5.30),

(5.31), (5.32) at t = 1, computed using no preconditioning (solid

curve), a similarity transformation to make the leading coe�cient of

A(x; D) = U� L(x; D)U constant (dashed curve), and a similarity trans-

formation to make B(x; D) = Q� U� L(x; D)UQ constant-coe�cient

modulo terms of negative order. In all casesN = 64 grid points are

used, with time steps � t = 2 � j for j = 0; : : : ; 6. 123

xiv

5.18 Size of solutions computed att = 1 using the Galerkin method with

forward Euler at various time steps, with and without preconditioning.

Top �gure is for problem (5.27), (5.28), (5.29) while bottom�gure is

for problem (5.30), (5.31), (5.32). 124

5.19 Approximate eigenfunctions ofP(x; D) from (5.10) generated by diag-

onalizing discretization matrix (v1(x)) and by preconditioning (v2(x)) 126

5.20 Relative error, measured using theL2 norm, in approximate eigenfunc-

tions of P(x; D) from (5.10) generated by diagonalizing discretization

matrix and by preconditioning to make second-order and zeroth-order

coe�cients constant . 127

5.21 Plot of execution time versus accuracy for �nite-di�erence and Gaus-

sian quadrature methods used to compute approximate solution of

problem (5.11), (5.12), (5.13) att = 1. 128

6.1 Estimates of relative error in the approximate solution~u(x; t) of (6.2),

(6.3), (6.4) at t = 1 computed using �nite di�erencing with Crank-

Nicolson (solid curve), Algorithm 2.2 with Gaussian quadrature (dashed

curve), and Algorithm 2.2 with Gauss-Radau quadrature (dashed-dotted

curve) with N = 64 grid points and time steps � t = 2 � j for j = 0; : : : ; 6.134

6.2 Estimates of relative error in the approximate solution~u(x; 1) of (6.7),

(6.8), (6.9) computed using Crank-Nicolson (solid curve),Algorithm

2.2 with Gaussian quadrature (dashed curve) and Algorithm 2.2 with

Gauss-Radau quadrature (dotted-dashed curve) withN = 64 nodes

and various time steps. 136

6.3 Fourier coe�cients of the approximate solution ~u(x; 5) of (6.10), (6.11),

(6.12) computed using the Fourier method (top graph) and Algorithm

2.4 with Gauss-Radau quadrature (bottom graph) withN = 64 nodes

and time step � t = 1=32. 138

xv

6.4 Size of approximate solutions of (6.10), (6.11), (6.12)computed using

Algorithm 2.4 with Gauss-Radau quadrature, with various combina-

tions of � t and the number of Gaussian quadrature nodes, denoted by

K . 139

6.5 Estimates of relative error in the approximate solution~u(x; 1) of the

time-dependent beam equation (6.16), (6.17), (6.18) computed using

Crank-Nicolson with �nite di�erencing (solid curve), and Gaussian

quadrature (dotted-dashed curve) withN = 64 nodes and time steps

� t = 2 � j , for j = 1; : : : ; 7. 141

6.6 Estimates of relative error in the approximate solution~u(x; 1) of Burger's

equation (6.25), (6.26), (6.27) computed using Crank-Nicolson with �-

nite di�erencing (solid curve), the Fourier method withode23s(dashed

curve), and Gaussian quadrature (dotted-dashed curve) with N = 64

nodes and various time steps. 145

6.7 Estimates of relative error in the approximate solution~u(x; t) of prob-

lem (5.11), (5.12), (5.13) att = 1 computed with correction, using Al-

gorithm 6.1 (dashed curve), and without correction, using Algorithm

2.2 (solid curve). In all casesN = 64 grid points are used, with time

steps � t = 2 � j , j = 0; : : : ; 6. 151

6.8 Estimates of relative error in the approximate solution~u(x; t) of (5.14),

(5.15), (5.16) at t = 1. Solutions are computed using Algorithm 6.1

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 152

6.9 Estimates of relative error in the approximate solution~u(x; t) of (5.17),

(5.18), (5.19) at t = 1. Solutions are computed using Algorithm 6.1

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 153

6.10 Estimates of relative error in the approximate solution ~u(x; t) of (5.20),

(5.21), (5.22) at t = 1. Solutions are computed using Algorithm 6.1

with 2 Gaussian quadrature nodes, with various time steps and N = 64

grid points. 154

xvi

6.11 Estimates of relative error in the computed solution ~u(x; t) to (6.40),

(6.41), (1.4) at t = 1. Solutions are computed using the �nite di�er-

ence scheme (6.50) (solid curve), Algorithm 2.2 with Gaussian quadra-

ture (dashed curve) and Algorithm 2.2 with Gauss-Radau quadrature

(dotted-dashed curve) with various time steps andN = 64 grid points.

In both instances of Algorithm 2.2,K = 2 Gaussian quadrature nodes

are used. 159

6.12 Estimates of relative error in the computed solution ~u(x; t) to (6.51),

(6.52), (6.53) at t = 1. Solutions are computed using the �nite di�er-

ence method (6.50) (solid curve), Algorithm 2.2 with Gaussian quadra-

ture (dashed curve) and Algorithm 2.2 with Gauss-Radau quadrature

(dotted-dashed curve) with various time steps andN = 64 grid points.

In both instances of Algorithm 2.2,K = 2 Gaussian quadrature nodes

are used. 160

xvii

xviii

Chapter 1

Introduction

In this thesis, we consider the initial-boundary value problem with one spatial dimen-

sion whose solution is a real-valued functionu(x; t) : [a; b] � [t0; inf ty) ! R, wherex

denotes a point in the spatial domain, andt denotes time. Without loss of generality,

we consider problems of the form

@u
@t

(x; t) + L(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (1.1)

u(x; 0) = f (x); 0 < x < 2�; (1.2)

whereL(x; D) is an m-th order di�erential operator of the form

L(x; D)u(x) =
mX

� =0

a� (x)D � u; D =
d

dx
; (1.3)

with coe�cients a� , � = 0; 1; : : : ; m. For most of this thesis, we will also assume

periodic boundary conditions

u(x; t) = u(x + 2�; t); �1 < x < 1 ; t > 0; (1.4)

and that the operator L(x; D) is self-adjoint and positive de�nite. In Chapter 6, we

will drop these assumptions, and also discuss problems withmore than one spatial

dimension.

1

2 CHAPTER 1. INTRODUCTION

Example Consider a neuron represented by a �ber of length̀ and radius a(x) at

each pointx in the interval [0; `]. If u(x; t) is the di�erence from rest of the membrane

potential at the point x and time t, then it satis�es the cable equation

@u
@t

+ L(x; D)u = 0; 0 < x < `; t > 0; (1.5)

whereL(x; D) is a second-order operator of the form (1.3) with

a2(x) = �
a(x)2

a(x)
p

1 + (a0(x))2Cm (x)
; (1.6)

a1(x) = �
a(x)a0(x)

a(x)
p

1 + (a0(x))2Cm (x)Ra(x)
; (1.7)

and

a0(x) =
Gm (x)
Cm (x)

; (1.8)

where Ra is the axial resistance,Gm is the membrane capacitance, andCm is the

membrane conductance. For details see [6].2

1.1 Closed-Form Representations of Solutions

If the initial data f (x) is 2� -periodic, and if the coe�cients of L(x; D), i.e., the

functions a� , � = 0; 1; : : : ; m, do not depend onx, one can easily write down an

expression for the solution to this problem,

u(x; t) =
1

p
2�

1X

! = �1

exp

"

i!x � t
mX

� =0

a� (i!)�

#

f̂ (!); (1.9)

where the coe�cients f̂ (!), de�ned by

f̂ (!) =
1

p
2�

Z 2�

0
e� i!x f (x) dx (1.10)

1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 3

for all integers! , represent the �nite Fourier transform of f (x). Alternatively, we can

write

u(x; t) = S(x; D ; t)f (x); (1.11)

whereS(x; D ; t) is the solution operatorfor the problem (1.1), (1.2), (1.4). If we keep

in mind the fact that

L(x; D)ê! (x) = � ! ê! (x); (1.12)

where

� ! =
mX

� =0

a� (i!)� ; ê! (x) =
1

p
2�

ei!x (1.13)

are the eigenvalues and eigenfunctions, respectively, ofL(x; D), then the solution

operator can easily be de�ned using an eigenfunction expansion, i.e.,

S(x; D ; t)f (x) = exp[� L(x; D)t]f (x) =
1X

! = �1

exp[� � ! t]ê! (x)ĥe! ; f i ; (1.14)

where the continuous inner producth�; �i is de�ned by

hf; g i =
Z 2�

0
f (x)g(x) dx: (1.15)

The eigenfunctions given in (1.13) are normalized so that, for each integer! ,

kê! k2 = ĥe! ; ê! i = 1: (1.16)

Obviously, the exact solution cannot be used in practice, but an approximate

solution can be obtained using a number of well-known methods, including �nite-

di�erence methods or spectral methods. The latter are especially well-suited to the

constant-coe�cient problem with periodic boundary conditions.

Unfortunately, in the variable-coe�cient case, these methods may begin to lose

some of their e�ectiveness. We will illustrate the application of such methods to both

classes of problems in order to highlight the particular di�culties caused by variable

coe�cients.

4 CHAPTER 1. INTRODUCTION

1.1.1 Spectral Methods

First, we review how spectral methods can be used to e�ciently obtain an accurate

approximate solution in the constant-coe�cient case. We write the approximate

solution ~u(x; t) in the form

~u(x; t) =
N=2� 1X

! = � N=2+1

û(!; t)ê! (x); (1.17)

and substitute this representation into (1.1) to obtain

N=2� 1X

! = � N=2+1

@̂u(!; t)
@t

ê! (x) + û(!; t)L(x; D)ê! (x) = 0 ; 0 < x < 2�; t > 0: (1.18)

Using the orthogonality of the eigenfunctions ^e! (x) with respect to the inner product

h; i , we obtain the decoupled system of ODEs

@̂u(!; t)
@t

� � ! û(!; t) = 0 ; 0 < x < 2�; t > 0; j! j < N= 2: (1.19)

Similarly, substituting the representation (1.17) into (1.2) provides the initial condi-

tion for each of these ODEs,

û(!; 0) = ĥe! ; f i ; j! j < N= 2: (1.20)

This approach of representing the solution as a truncated Fourier series and solving

the resulting system of ODEs is known as theFourier method.

If the data f (x) is represented on anN -point uniform grid, with grid spacing

h = 2�=N , then our approximate solution is

~u(x; t) =
N=2� 1X

! = � N=2+1

exp[� � ! t]ê! (x)ĥe! (�); f (�)i h; (1.21)

1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 5

where the discrete inner producth�; �i h is de�ned by

hu(�); v(�)i h =
NX

j =0

huj vj ; uj = u(x j); vj = v(x j); x j = jh: (1.22)

The approximate solution ~u(x; t) obtained by (1.21) is identically equal tou(x; t) if

f̂ (!) = 0 for ! outside the interval j! j < N= 2. For generalf (x), it is easy to see from

(1.21) that the error in the approximate solution arises from the error in interpolating

f (x) at the N grid points and from truncating the Fourier series of the solution.

Another way of looking at this process is to identify a function of x with an N -

vector whose elements are the function's values at the gridpoints, in which case the

computed solution can be written as

~u(t) = S(t)f = T � 1e� � tTf ; (1.23)

where T is the discrete Fourier transform operator, and the matrix � is a diagonal

matrix with diagonal elements equal to� ! for j! j < N= 2. The matrix S(t) is a

discretization of the solution operatorS(x; D ; t).

As discussed in [27], the matrix-vector multiplications involving T and T � 1 can be

carried out using the Fast Fourier Transform, making the Fourier method an e�cient

and accurate algorithm for computing an approximate solution to (1.1), (1.2), (1.4)

when L(x; D) has constant coe�cients.

1.1.2 Finite Di�erence Methods

We will illustrate the use of �nite di�erence methods with a speci�c example. Suppose

that L(x; D) is a second-order constant-coe�cient operatorL(D) with a1 = a0 � 0.

Then the problem (1.1), (1.2), (1.4) is simply the heat equation.

We de�ne a uniform grid on the interval [0; 2�) using N gridpoints located at

x j = jh , j = 0; 1; : : : ; N � 1, where h = 2�=N . If we represent a gridfunction

u(x) as a vectoru with N components representing the values ofu at the gridpoints

f x j g, j = 0; : : : ; N � 1, then we can approximate the action ofL(x; D) = a2D 2 on a

6 CHAPTER 1. INTRODUCTION

gridfunction u(x) using the 2nd-order-accurate three-point stencil

L(D)u(x j) = a2D 2u(x j) � a2
u(x j +1) � 2u(x j) + u(x j � 1)

h2
+ O(h2): (1.24)

Then, we can use the 2nd-order-accurate Crank-Nicolson method as our time-stepping

method to obtain u(t + � t) from u(t) by solving the system of linear equations

�
I +

� t
2

A
�

u(t + � t) =
�

I �
� t
2

A
�

u(t) (1.25)

at each time step of length � t, whereA is the matrix

A =
a2

h2

2

6
6
6
6
6
6
6
6
6
6
6
6
4

� 2 1 0 � � � � � � 0 1

1 � 2 1 0 � � � � � � 0

0 1 � 2 1 0
.

0 1 � 2 1 0

0 � � � � � � 0 1 � 2 1

1 0 � � � � � � 0 1 � 2

3

7
7
7
7
7
7
7
7
7
7
7
7
5

: (1.26)

Note that A is a circulant matrix due to the periodic boundary conditions (1.4).

Although this system must be solved at each time step, it can be accomplished

e�ciently due to the structure of A, as well as the fact that any required matrix

factorization need only be computed once.

We can easily analyze the e�ectiveness of this method by exploiting the fact that

the functions ê! (x) are not only eigenfunctions of the di�erentiation operator D, but

also the di�erencing operatorsD+ and D � , de�ned by

D+ f (x) =
f (x + h) � f (x)

h
; D � f (x) =

f (x) � f (x � h)
h

; (1.27)

from which it follows (see [3], [27]) that

Aê! = ~� ! ê! ; ~� ! =
a2

h2
(2 cos!h � 2)ê! ; (1.28)

1.1. CLOSED-FORM REPRESENTATIONS OF SOLUTIONS 7

and

û(t + � t) =
N=2X

j ! j= � N=2+1

�
1 � a2� (cos!h � 1)
1 + a2� (cos!h � 1)

�
ê! ; (1.29)

where� = � t=h2. From this representation of the approximate solution, it is easy to

see that this method is unconditionally stable, since the ampli�cation factor

jQ! j =

�
�
�
�
1 � a2� (cos!h � 1)
1 + a2� (cos!h � 1)

�
�
�
� < 1 (1.30)

regardless of �t and N . However, as� increases,Q! approaches� 1, so one must

still be careful when choosing these parameters.

It is also easy to see from (1.29) that this �nite di�erence scheme is second-order

accurate in both time and space, as

~� ! = � ! + O(h2); (1.31)

and

Q! = e� ~� ! � t + O(� t2): (1.32)

1.1.3 Variable-Coe�cient Problems

Now, suppose thatL(x; D) has variable coe�cients. Then the functions ê! (x) are

no longer the eigenfunctions ofL(x; D); in fact, the eigenfunctions or eigenvalues

are unknown. The components of ~u(x; t) in the directions of ê! (x), j! j < N= 2, can

no longer be computed independently of one another. In otherwords, the matrix

� is now a dense matrix, and the e�ciency of the constant-coe� cient case is lost.

Furthermore, there is no simple representation of the approximate solution that can

be evaluated at an arbitrary point (x; t).

A greater di�culty arising from L(x; D) having variable coe�cients is that time-

stepping methods that normally yield higher-order accuracy in time for constant-

coe�cient problems can fail to do so in the variable-coe�cient case. To see this, let

8 CHAPTER 1. INTRODUCTION

u(x; t) be the exact solution to (1.1), (1.2), (1.4),

u(x; t) = S(x; D ; t)f (x); (1.33)

and let v(x; t) be the computed solution, given by

v(x; t) = T � 1 ~S(L; t)T f (x); (1.34)

where the function ~S(�; t) is an approximation to exp[� �t] and L is anN � N matrix

with entries

L �! = ĥe� ; L(x; D)ê! i : (1.35)

Then we have

kv(x; t) � u(x; t)k2 =
X

j ! j<N= 2

jv̂(!; t) � û(!; t)j2 +
X

j ! j� N=2

jv̂(!; t)j2

=
X

j ! j<N= 2

jv̂(!; t) � û(!; t)j2 +
X

j ! j� N=2

jv̂(!; t)j2

�
X

j ! j<N= 2

�
jhê! ; [S(x; D ; t) � T � 1 exp(� Lt)T]f (x)ij +

jhê! ; T � 1[exp(� Lt) � ~S(L; t)]T f (x)ij
i 2

+
X

j ! j� N=2

jv̂(!; t)j2:

Consider the term

D ! = jhê! ; [S(x; D ; t) � T � 1 exp(� Lt)T]f (x)ij ; j! j < N= 2: (1.36)

When L has constant coe�cients, D ! = 0, since the discrete Fourier transform di-

agonalizesS(x; D ; t). However, if L has variable coe�cients, then D ! = O(� t� xk),

where the value ofk depends on the smoothness off (x) and the coe�cients of L(x; D).

It follows that this error term can dominate error introduced by the approximation

of exp[� Lt] by ~S(L; t), thus reducing the advantage of using a higher-order time-

stepping scheme. The errorD ! is the result of the phenomenon ofaliasing (see [27]),

which can cause undue ampli�cation of high-frequency components of the solution,

1.2. THE PROPOSED ALTERNATIVE 9

eventually causing wild oscillations. As discussed in [23], the unsmoothed Fourier

method can su�er from weak instability, which is caused by aliasing. Unlike strong

instability, this problem cannot be addressed simply by using a smaller time step;

the remedy for this weak instability is to either use smoothing techniques (see [3]) to

damp the high-frequency components, or to increase the number of gridpoints; either

of these strategies reduces the errorD ! .

Given these di�culties with variable-coe�cient problems, it is natural to consider

whether there is some other approach that can yield an approximate solution ~u(x; t)

with the following properties:

� all computed frequency components are resolved with reasonable accuracy re-

gardless of the resolution of the spatial discretization, and

� it has a simple representation that can easily be evaluated at an arbitrary point

(x; t), as well as di�erentiated analytically with respect to time.

Can these simplicities associated with constant-coe�cient problems be generalized in

some sense to the variable-coe�cient case?

1.2 The Proposed Alternative

This thesis provides a new perspective towards variable-coe�cient problems, applying

techniques employed in the study of pseudodi�erential operators in an e�ort to relate

variable-coe�cient problems to their simpler constant-coe�cient counterparts. Once

this relationship is established, we will explore the use ofnumerical linear algebra in

the design and implementation of numerical methods for solving such problems.

The basic process is to discretize the problem on anN -point grid consisting of the

gridpoints x j = jh , j = 0; : : : ; N � 1 whereh = 2�=N . We then proceed as follows

to obtain an approximate solutionu(x; t f inal) for some chosen timet f inal :

10 CHAPTER 1. INTRODUCTION

Precondition L(x; D) to obtain a new operator
~L(x; D) = U?L(x; D)U, whereU is a unitary

operator
~f (x) = U� f (x)

t = 0

Set v(x; 0) = ~f (x)

while t < t f inal

Select a time step �t

for each frequency! = � N=2 + 1; : : : ; N=2 � 1;

Compute v̂(!; t + � t) =
D

ê! ; ~S(�; D; � t)v(�; t)
E

where ~S(x; D ; � t) = exp[� ~L(x; D)� t]

end

v(�; t + � t) = T � 1v̂(�; t + � t)

whereT is the discrete Fourier transform

t = t + � t

end

u(x; t f inal) = Uv(x; t f inal)

Chapter 3

Section 4.5.1

Chapter 2

While much of the remainder of this thesis will be devoted to describing the details

of the above algorithm, two main features will be highlighted here. First of all, a

unitary similarity transformation will be applied to the di �erential operator L(x; D)

in order to transform the original problem (1.1) into an equivalent problem of the

form
@v
@t

+ ~L(x; D)v = 0; (1.37)

where the new operator~L(x; D) more closely resembles a constant-coe�cient opera-

tor. The idea of using a unitary transformation to \bend" L in this manner is inspired

by the ideas expressed by Fe�erman in [10].

This preconditioning ofL can be used to aid any solution method for the problem

(1.37), but this thesis will present an alternative method for this problem as well.

This alternative method is a Galerkin method that computes the Fourier components

v̂(!; t) of the approximate solutionv(x; t). To compute each Fourier component, this

1.2. THE PROPOSED ALTERNATIVE 11

method employs the algorithms described by Golub and Meurant in [19] to compute

elements of functions of matrices. The computed Fourier components can be viewed

as functions of t, resulting in a more compact representation of the approximate

solution than can be obtained using standard time-steppingmethods.

1.2.1 Generalizing the Fourier Method

At each time step, we use a Galerkin method, computing Fourier components of the

solution at time t + � t,

v̂(!; t + � t) =
D

ê! (x); ~S(x; D ; � t)v(x; t)
E

; ! = � N=2 + 1; : : : ; N=2 � 1; (1.38)

using Gaussian quadrature rules.

This is the basic idea behindcollocation (see [3], [27]). However, collocation used

in conjunction with an N -point discretization of the spatial domain can requireO(N)

quadrature nodes for su�cient accuracy, particularly for high-frequency components,

due to the oscillatory behavior of the integrands involved and the fact that the weights

functions in each integral are not concentrated in the domain of integration. In

this thesis, we will develop methods that employ quadraturein such a way that

O(1) nodes can be used for each component by working with smooth integrands and

weight functions that are highly concentrated. This is accomplished by computing

orthogonal bases of appropriately chosen Krylov subspacesassociated withL(x; D),

and for this reason these methods will be calledKrylov subspace methodsfor solving

initial-boundary value problems.

In previous work, Krylov subspaces have been used with much success to approx-

imate the exponential of a matrixA, see for instance [28]. Such methods use a single

high-dimensional Krylov subspace to approximate the solution operator to an ODE

of the form y 0 = Ay. In contrast, the methods described in this thesis employ di�er-

ent Krylov subspaces for each component of the solution, each of which are of lower

dimension. It will be seen that our approach yields more rapid convergence for each

component, at the expense of having to work harder to developan e�cient algorithm

to implicitly compute and use such a large number of subspaces.

12 CHAPTER 1. INTRODUCTION

The upshot of our approach is a generalization of the Fouriermethod to variable-

coe�cient problems, in the sense that we obtain a representation of the computed

solution ~u(x; t) that has the form

~u(x; t) =
1

p
2�

N=2� 1X

! = � N=2+1

ei!x

JX

j =1

cj;! e� � j;! t

!

(1.39)

that can easily be evaluated atany time t. Unlike the constant-coe�cient case, this

representation includes both temporal and spatial discretization error.

One advantage of using Gaussian quadrature in this manner isclear: because

Gaussian quadrature rules can yield high accuracy with few evaluations of the inte-

grand, they allow much more e�cient evaluation of the inner products (1.38) than

standard matrix-vector multiplication. In Chapter 2, we will see that a second, less

obvious advantage of using Gaussian quadrature is that one can achieve higher-order

temporal accuracy than with standard time-stepping methods, even when using low-

order quadrature rules. In Chapter 4, we will also see how Gaussian quadrature

rules can aid in time step selection. In Chapter 6, it will be demonstrated that for

some parabolic problems, large time steps can be used, thus eliminating the need for

time-stepping altogether in these cases.

We will see that the challenge is to obtain the nodes and the weights for the ap-

propriate Gaussian quadrature rules e�ciently, as opposedto collocation, in which

the nodes and weights are readily available. The basic idea is to apply the Lanczos

method to a discretization of the operatorL(x; D); the connection between the Lanc-

zos method and Gaussian quadrature is well-known and will bereviewed in Chapter

2. In Chapter 4, we will see how the use of expression trees to represent Lanczos vec-

tors and elements of Jacobi matrices can speed up the processconsiderably, resulting

in an algorithm that requires O(N logN) oating-point operations per time step.

1.2.2 The Uncertainty Principle and Preconditioning

We will see that the technique of computing the components (1.38) using Gaussian

quadrature is most e�ective when the coe�cients of the operator L(x; D) are \nearly

1.2. THE PROPOSED ALTERNATIVE 13

constant", i.e., L(x; D) is a small perturbation of a constant-coe�cient operator.

Therefore, we will need to develop techniques forpreconditioning L(x; D) so that it

is well-suited for our solution process.

We can proceed by studying the geometry of the operatorL(x; D) in phase space

f (x; �)jx 2 [0; 2�]; � 2 Rg; (1.40)

where the �rst coordinate represents physical space and thesecond coordinate repre-

sents Fourier space. Thesymbolof a di�erential operator L(x; D) of the form (1.3) is

a function L(x; �) de�ned on phase space by

L(x; �) = e� i�x L(x; D)ei�x =
mX

� =0

a� (x)(i�)� : (1.41)

The SAK principle, proposed by Fe�erman in [10] and based on the uncertainty

principle, establishes a connection betweenL(x; �) and the eigenvalues ofL(x; D),

when L(x; D) is self-adjoint. Our goal is to exploit this connection in order to obtain

an approximate diagonalization ofL(x; D).

The approach can best be described using an examination of the symbols of

constant-coe�cient operators as opposed to those of variable-coe�cient operators.

Figure 1.1 displays the level curves of the symbol of a self-adjoint constant-coe�cient

operator L(D) = D 2 � 1, which lie along the lines� = constant. Figure 1.2 dis-

plays those same curves for a self-adjoint variable-coe�cient operator L(x; D) =

D 2 � (1 + 1
2 sinx). While these curves do not lie along those same lines, one can

see that an appropriate change of variable in phase space canbe used to \straighten"

them out to some extent.

We will utilize the connection between transformations in phase space and op-

erators on functions in physical space in order to precondition a variable-coe�cient

operatorL(x; D) so that its symbol L(x; �) more closely resembles that of a constant-

coe�cient operator ~L(D). These preconditioners, which take the form of unitary

similarity transformations, will e�ectively perform an approximate diagonalization of

L(x; D). We will also see that such transformations are not only very e�ective, but

14 CHAPTER 1. INTRODUCTION

0
1

2
3

4
5

6

0

5

10

15

20

25

30
0

100

200

300

400

500

600

700

800

900

xx

|L
(x

,x
)|

Symbol of L(x,D)=D2-1

Figure 1.1: Symbol of a constant-coe�cient operatorL(x; D) = D 2 � 1

1.2. THE PROPOSED ALTERNATIVE 15

0
1

2
3

4
5

6

0

5

10

15

20

25

30
0

200

400

600

800

1000

1200

1400

xx

|L
(x

,x
)|

Symbol of L(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)

Figure 1.2: Symbol of a variable-coe�cient operatorL(x; D) = D((1 + 1
2 sinx)D) ��

1 + 1
2 sinx

�

16 CHAPTER 1. INTRODUCTION

also very e�cient, due to the use of symbolic calculus to compose pseudodi�erential

operators.

1.3 Outline

In Chapter 2, we will construct an algorithm for solving (1.1), (1.2), (1.4) that e�-

ciently generalizes the Fourier method to variable-coe�cient operators by employing

Gaussian quadrature to compute Fourier components of the solution at each time

step. We will also study the convergence properties of this algorithm.

Chapter 3 will address the need for preconditioning that will be revealed in the

aforementioned convergence analysis. We will develop unitary similarity transforma-

tions that will approximately diagonalize a self-adjoint di�erential operator L(x; D).

In Chapter 4, we will discuss the implementation of our overall algorithm that

applies the methods of the preceding two chapters to solve (1.1), (1.2), (1.4). This

chapter will focus on the development of an e�cient algorithm, employing symbolic

calculus on di�erential operators to implement similarity transformations and modi-

�ed moments to construct Gaussian quadrature rules.

Chapter 5 will feature a number of applications of our algorithm and discuss its

performance on these problems.

Chapter 6 will present generalizations to other classes of problems and discuss

possible directions for future research.

1.4 Notation

The following conventions are followed in this thesis:

� A bar over a scalar, vector, or function is used to denote the complex conjugate

of the given entity; e.g., the complex conjugate of the scalar u is denoted byu.

� Vectors will be denoted by bold lowercase letters, while matrices will be denoted

by italic uppercase letters; e.g.,u refers to a vector whileA refers to a matrix.

1.4. NOTATION 17

� The superscriptH will be used to denote the Hermitian transpose of a matrix

or vector: uH = uT .

� We will denote the average value of a functionf (x) on the interval [0; 2�] by

Avg f , i.e.,

Avg f =
1

2�

Z 2�

0
f (x) dx: (1.42)

� If u(x) is a function de�ned on the interval [0; 2�], then kuk, unless speci�ed

otherwise, will denote theL2 norm of u, de�ned by

kuk =
� Z 2�

0
ju(x)j2 dx

� 1=2

: (1.43)

� If u is a vector, then, unless speci�ed otherwise,kuk will denote the vector

2-norm of u,

kuk = kuk2 =

nX

j =1

juj j2
! 1=2

: (1.44)

Similarly, if A is a matrix, then, unless speci�ed otherwise,kAk will denote the

matrix 2-norm of A.

Chapter 2

Krylov Subspace Methods

2.1 Introduction

In this chapter, we will develop a time-stepping method for solving the equation (1.1),

(1.2), (1.4), where the operatorL(x; D) has variable coe�cients. Our method will

resemble the Fourier method in the sense that we will use a uniform N -point grid

with grid spacing h = 2�=N to represent functions ofx and compute approximations

to

û(!; t n) =
�

1
p

2�
ei!x ; u(x; t n)

�
; j! j < N= 2; (2.1)

at each timetn = n� t, n = 1; 2; : : :. To accomplish this task e�ciently, we represent

u(x; t) using the solution operator S(x; D ; t) de�ned in (1.14) and create a frame-

work for our algorithm. With T denoting the discrete Fourier transform, we will,

conceptually, proceed as follows:

Choose a timestep �t

for n = 0; 1; : : :

for ! = � N=2 + 1; : : : ; N=2 � 1

û(!; t n+1) =
D

1p
2�

ei!x ; S(x; D ; � t)u(x; t n)
E

end

u(x; t n+1) = T � 1û(!; t n+1)

18

2.1. INTRODUCTION 19

end

This chapter is devoted to two basic problems arising from this iteration:

� computing the inner products

û(!; t n+1) =
�

1
p

2�
ei!x ; S(x; D ; � t)u(x; t n)

�
(2.2)

e�ciently, and

� determining when the resulting algorithm converges asN ! 1 and � t ! 0,

and, if so, at what rate.

On an N -point grid, the operator L(x; D) and the solution operatorS(x; D ; � t) can

be viewed asN � N matrices, and the quantity (2.2) can be viewed as a bilinear form

û(!; t n+1) = êH
! SN (� t)u(tn); (2.3)

where

[ê!]j =
1

p
2�

ei!jh ; [u(tn)]j = u(jh; t n); (2.4)

and

SN (t) = exp[� LN t]; [LN]jk =
mX

� =0

a� (jh)[D �
N]jk (2.5)

whereDN is a discrete di�erentiation operator de�ned on the space ofgridfunctions.

In the next section, we will examine how the expression (2.3)can be computed e�-

ciently.

In this chapter we will assume thatL(x; D) is a second-order self-adjoint positive

de�nite operator and prove convergence in this case. We willdiscuss more general

operators in Chapter 6.

20 CHAPTER 2. KRYLOV SUBSPACE METHODS

2.2 Moments and Quadrature

In [19] Golub and Meurant describe a method for computing quantities of the form

uT f (A)v ; (2.6)

whereu and v are N -vectors,A is an N � N symmetric positive de�nite matrix, and

f is a smooth function. Our goal is to apply this method withA = LN whereLN was

de�ned in (2.5), f (�) = exp(� �t) for somet, and the vectorsu and v are derived

from ê! and u(tn).

The basic idea is as follows: since the matrixA is symmetric positive de�nite, it

has real eigenvalues

0 < � 1 � � 2 � � � � � � N ; (2.7)

and orthogonal eigenvectorsqj , j = 1; : : : ; N . Therefore, the quantity (2.6) can be

rewritten as

uT f (A)v =
NX

j =1

NX

k=1

uj [f (A)]jk vk

=
NX

j =1

NX

k=1

uj [f (Q� QT)]jk vk

=
NX

j =1

NX

k=1

uj [Qf (�) QT]jk vk

=
NX

j =1

NX

k=1

NX

`=1

uj Qj` f (� `)Qk` vk (2.8)

=
NX

`=1

f (� `)

NX

j =1

uj Qj`

!
NX

k=1

Qk` vk

!

=
NX

`=1

f (� `)uT qj qT
j v:

We let a = � 1 be the smallest eigenvalue,b = � N be the largest eigenvalue, and

2.2. MOMENTS AND QUADRATURE 21

de�ne the measure� (�) by

� (�) =

8
>><

>>:

0; if � < a
P i

j =1 � j � j ; if � i � � < � i +1
P N

j =1 � j � j ; if b � �

; � j = uT qj ; � j = qT
j v; (2.9)

If this measure is positive and increasing, then the quantity (2.6) can be viewed as a

Riemann-Stieltjes integral

uT f (A)v = I [f] =
Z b

a
f (�) d� (�): (2.10)

As discussed in [7], [15], [16], [19], the integralI [f] can be bounded using either Gauss,

Gauss-Radau, or Gauss-Lobatto quadrature rules, all of which yield an approximation

of the form

I [f] =
KX

j =1

wj f (t j) +
MX

j =1

vj f (zj) + R[f]: (2.11)

The nodest j , for j = 1; : : : ; K , are determined by themoments

� j =
Z b

a
� j d� (�); j = 0; : : : ; 2K � 1; (2.12)

in such a way as to make the rule exact for polynomials of as high degree as possible.

The nodeszj , j = 1; : : : ; M , are prescribed, and the weightsvj , j = 1; : : : ; M , are

determined by the choice of these prescribed nodes (see [8],[11], [12], [22]). The

weights wj , j = 1; : : : ; K , and zj , j = 1; : : : ; M , satisfy

wj =
Z b

a
` j (�) d� (�); zj =

Z b

a

~̀
j (�) d� (�); (2.13)

where

` j (�) =
KY

k=1 ;k6= j

� � tk

� j � � k

MY

i =1

� � zi

� j � zi
; j = 1; : : : ; K; (2.14)

22 CHAPTER 2. KRYLOV SUBSPACE METHODS

and

~̀
j (�) =

KY

k=1

� � tk

zj � � k

MY

i =1 ;i 6= j

� � zi

zj � zi
; j = 1; : : : ; M: (2.15)

The polynomials ` j (�) are the Lagrange polynomials satisfying̀ j (tk) = � jk , j; k =

1; : : : ; K and ` j (zk) = 0, j = 1; : : : ; K , k = 1; : : : ; M . Similarly, the polynomials ~̀
j (�)

are the Lagrange polynomials satisfying~̀j (tk) = 0, j = 1; : : : ; M , k = 1; : : : ; K and
~̀
j (zk) = � jk , j; k = 1; : : : ; M . (see [41])

2.2.1 The case u = v

We briey examine the case whereu = v. In this case, the measure� (�) is a positive

increasing function, and it is known (see [41]) that

R[f] =
f (2K)(�)
(2K)!

Z b

a

"
KY

j =1

(� � t j)

#2

d� (�); a < � < b: (2.16)

For the measure� (�), it is possible (see [42]) to de�ne a sequence of polynomials

p0(�), p1(�), : : : that are orthonormal with respect to � (�):

Z b

a
pi (�)pj (�) d� (�) = � ij (2.17)

and pj is of exact degreej . Moreover, the roots ofpj are distinct, real and lie in the

interval [a; b].

This set of orthonormal polynomials satis�es a three-term recurrence relationship

(see [42]):

� j pj +1 (�) = (� � � j)pj (�) � � j � 1pj � 1(�); p0(�) � 0; p1(�) � 1; (2.18)

provided that
Rb

a d� (�) = 1.

In matrix form, this can be written as

� p(�) = JK p(�) + � K pK (�)eK ; (2.19)

2.2. MOMENTS AND QUADRATURE 23

where

p(�) =

2

6
6
6
6
6
4

p0(�)

p1(�)
...

pK � 1(�)

3

7
7
7
7
7
5

; JK =

2

6
6
6
6
6
6
6
4

� 1 � 1

� 1 � 2 � 2

.

� K � 2 � K � 1 � K � 1

� K � 1 � K

3

7
7
7
7
7
7
7
5

; (2.20)

and ek is the kth standard basis vector with all components equal to zero except for

a 1 in the kth position. The tridiagonal matrix JK is known as aJacobi matrix.

The eigenvalues ofJK (which are the zeroes ofpK) are the nodes of the Gaussian

quadrature rule. The weights are the squares of the �rst elements of the normalized

eigenvectors ofJk (see [22]). The orthonormal polynomials can be computed by

applying the symmetric Lanczos iteration to the matrixA, with starting vector u.

2.2.2 The case u 6= v

The caseu 6= v can be handled in one of two ways. One is by reduction to the case of

u = v, as discussed in [14]: Ifu and v are real, then we can use apolar decomposition

uH f (A)v =
1
4

�
(u + v)H f (A)(u + v) � (u � v)H f (A)(u � v)

�
: (2.21)

A second method, discussed in [19], is to view this case as a perturbation of the u = v

case: we can choose a small positive constant� and compute

uH f (A)v =
1
�

�
uH f (A)(u + � v) � uH f (A)u

�
: (2.22)

The constant � should be chosen so that the measure induced byu and u + � v is

positive and increasing; this issue will be addressed in Chapter 4. In this case, to

compute uH f (A)(u + � v), two sets of polynomialsf pj (�)g, f qj (�)g are computed

that satisfy Z b

a
pi (�)qj (�) d� (�) = � ij ; (2.23)

24 CHAPTER 2. KRYLOV SUBSPACE METHODS

and these polynomials satisfy the recurrence relationships

� j pj +1 (�) = (� � � j)pj (�) � � j � 1pj � 1(�); p0(�) � 0; p1(�) � 1; (2.24)

� j qj +1 (�) = (� � �� j)qj (�) � � j � 1qj � 1(�); q0(�) � 0; q1(�) � 1; (2.25)

or, in matrix form,

� p(�) = JK p(�) + � K pK (�)eK ; (2.26)

� q(�) = J H
K q(�) + � K qK (�)eK ; (2.27)

wherep(�) is de�ned as in (2.20),q(�) is de�ned similarly, and

JK =

2

6
6
6
6
6
6
6
4

� 1 � 1

 1 � 2 � 2

.

 K � 2 � K � 1 � K � 1

 K � 1 � K

3

7
7
7
7
7
7
7
5

: (2.28)

As in the caseu = v, the eigenvalues of the Jacobi matrixJK are the nodes of the

Gaussian quadrature rule, and the weights are the products of the �rst elements of

the left and right normalized eigenvectors ofJK . The polynomials can be computed

by applying the unsymmetric Lanczos iteration to the matrixA with starting vectors

u and u + � v .

We will see that either method for handling the case ofu 6= v has its advantages.

In most cases, the decomposition (2.21) is preferable because it relies on the sym-

metric Lanczos iteration, which is, numerically, more stable than its unsymmetric

counterpart; see [21] for details. The second approach, however, has the following

advantages:

� It leads to a somewhat more accurate algorithm for solving PDE, as will be

discussed later in Section 2.4.

� It also leads to a more e�cient algorithm for solving PDE, as will be discussed

2.2. MOMENTS AND QUADRATURE 25

in Chapter 4.

2.2.3 Gauss-Radau Quadrature Rules

The integrals we are computing feature an integrand that decays rapidly away from

the smallest eigenvalue� = � 1. Therefore, it is wise to ensure that at least one

quadrature node is near� 1, so that the integrand's main contribution to the value of

the integral is computed as accurately as possible. To that end, we employ Gauss-

Radau quadrature rules. Gauss-Radau rules are extensions of the standard Gaussian

quadrature rule in which one nodez1 is prescribed. This extended rule can be con-

structed simply by proceeding as with Gaussian quadrature,except that the matrix

Jk in (2.20) is augmented so that it has one additional row and column, and also has

one prescribed eigenvalue,z1 (see [15]). We use the following results (see [19]):

Theorem Supposeu = v in (2.6) and f is such that f (2n+1) (�) < 0, for all n � 0 and

all � 2 (a; b). Let UGR be de�ned as

UGR [f] =
KX

j =1

wa
j f (ta

j) + va
1f (a); (2.29)

where wa
j , va

1, ta
j are the weights and nodes computed withz1 = a, and let LGR be

de�ned as

LGR [f] =
KX

j =1

wb
j f (tb

j) + vb
1f (b); (2.30)

wherewb
j , vb

1, tb
j are the weights and nodes computed withz1 = b. Then, for all K we

have

LGR [f] � I [f] � UGR [f]; (2.31)

and, for some� 2 (a; b),

I [f] � UGR [f] =
f (2K +1) (�)
(2K + 1)!

Z b

a
(� � a)

"
KY

j =1

(� � ta
j)

#2

d� (�); (2.32)

26 CHAPTER 2. KRYLOV SUBSPACE METHODS

I [f] � LGR [f] =
f (2K +1) (�)
(2K + 1)!

Z b

a
(� � b)

"
KY

j =1

(� � tb
j)

#2

d� (�): (2.33)

For the integrand f (�) = e� �t , wheret is a positive constant,UGR [f] tends to be

a relatively sharp upper bound, sincef (�) decays very rapidly away from� = a, and

therefore is well approximated byf (a) ~̀
1(�) where ~̀

1(�) was de�ned in (2.15).

2.3 Formulation

We are now ready to state in full detail an algorithm to solve (1.1), (1.2), (1.4) using

Gaussian quadrature rules. First, we describe how a component of a solution to (1.1),

(1.2), (1.4) can be approximated. The following algorithm approximates the quantity

hu; exp[� L(x; D)� t]vi by hu; wi where the functionw belongs to theK -dimensional

Krylov subspace

K(v(x); L(x; D); K) = spanf v(x); L(x; D)v(x); : : : ; L(x; D)K � 1v(x)g: (2.34)

Explicit time-marching methods compute an approximation of this form as well, but

a consequence of the following algorithm is that a di�erent linear combination of the

basis functions in (2.34) is used for each component in orderto maximize accuracy

for that component.

Using a Gaussian rule and a Gauss-Radau rule, we will computeupper and lower

bounds on the quantity hu; S(x; D ; t)vi :

Algorithm 2.1 Given functions u(x) and v(x), a self-adjoint di�erential opera-

tor L(x; D), and a time t, the following algorithm computes boundsz1 and z2 on

hu; S(x; D ; t)vi .

 0� 0 = hu; vi

f 0 = 0

g0 = 0

f 1 = v=� 0

2.3. FORMULATION 27

g1 = u=� 0

for j = 1; : : : ; K

� j = hgj ; L(x; D)f j i

r j = L(x; D)f j � � j f j � � j � 1f j � 1

pj = L(x; D)gj � �� j gj � � j � 1gj � 1

 j � j = hpj ; r j i

f j +1 = r j =� j

gj +1 = pj =� j

end

Let JK be the K � K matrix de�ned by (2.28)

z1 = 0� 0[exp(� JK t)]11

Let a be an approximation to the smallest eigenvalue ofL(x; D)

Solve (JK � aI)� = K � K eK

� K +1 = a + � K

Let JK +1 be the matrix obtained from JK by adding

� K +1 to the diagonal, � K to the superdiagonal

and K to the subdiagonal

z2 = 0� 0[exp(� JK +1 t)]11

Some remarks about this algorithm are in order:

� For the Gauss-Radau rule, an approximation to the smallest eigenvalue of

L(x; D) is required. This approximation can be obtained by using the symmet-

ric Lanczos algorithm on a matrixL that represents a discretization ofL(x; D),

with initial vector ê0, whereê! was de�ned in (2.4).

� If any of the Gaussian quadrature nodes are already close to the smallest eigen-

value of L(x; D), it is possible that � K +1 may be positive, in which case the

resulting Gauss-Radau rule should not be used. This is actually a welcome

scenario, because our goal was to ensure that at least one node was placed near

the smallest eigenvalue. Since one of the Gaussian quadrature nodes satis�es

this condition, we can simply use the Gaussian rule instead of the Gauss-Radau

rule and save computational e�ort.

28 CHAPTER 2. KRYLOV SUBSPACE METHODS

The preceding algorithm serves as the cornerstone of our solution method, which we

now present:

Algorithm 2.2 Given u(x; 0) = f (x), a �nal time t f inal and a timestep � t such that

t f inal = j � t for some integerj , the following algorithm computes an approximation

~u(x; t) to the solution u(x; t) of (1.1), (1.2), (1.4) at gridpoints x j = jh for j =

0; 1; : : : ; N � 1 with h = 2�=N and times t = n� t for n = 1; : : : ; tf inal =� t.

u0 = f

t = 0

for n = 1; : : : ; tf inal =� t do

for ! = � N=2 + 1; : : : ; N=2 � 1

Compute u1 = ĥe! ; S(x; D ; � t)ê! i

using Algorithm 2.1

Choose a positive constant� !

Compute u2 = ĥe! ; S(x; D ; � t)(ê! + � ! ~un)i

using Algorithm 2.1

ûn+1
! = (u2 � u1)=� !

end

~un+1 =
P

j ! j<N= 2 ûn+1
! ê!

end

We now make some observations about the preceding algorithm:

� The �rst application of Algorithm 2.1 calls for the use of thesymmetric Lanczos

algorithm, whereas the second application calls for the unsymmetric algorithm.

� The measure in the second integral is complex, while Gaussian quadrature is

meant to be applied to integrals whose measures are positiveand increasing.

While this may seem inconsistent, it is actually not, because it can be shown

that in the case of a complex measure, the quadrature rule still provides the

same level of accuracy in the sense that the rule is exact for polynomials of

2.4. CONVERGENCE ANALYSIS 29

degree 2K � 1 or less. Further discussion of the complex case can be foundin

[39].

� It is natural to ask whether it is necessary to select a timestep � t, instead of

simply computing the solution at time t f inal immediately. Unfortunately, the

latter approach is not practical because ast f inal increases, so does the quadra-

ture error R[f]. This occurs because Gaussian quadrature rules interpolate the

integrand at the nodes and integrate the interpolant exactly on the interval

[a; b], and for larger t, the integrand f (�) = e� �t becomes more di�cult to ap-

proximate accurately using a low-order polynomial interpolant. In Chapter 3

we will see how preconditioning techniques applied toL(x; D) can be used to

alleviate this di�culty to some extent.

Note that we have not indicated how to select the parameters �t and � ! used in

Algorithm 2.2. We will discuss strategies for selecting these parameters in Chapter 4.

2.4 Convergence Analysis

We wish to prove that the approximation ~u(x; t) obtained from Algorithm 2.2 con-

verges to the exact solutionu(x; t) of (1.1), (1.2), (1.4) as � t ! 0 and N ! 1 .

However, it is necessary to modify Algorithms 2.1 and 2.2 in order to facilitate a

proof. The modi�cations are as follows:

� We need to be more speci�c about how the entries of the Jacobi matrices are

computed in Algorithm 2.1; we will use a discretization suchas the one described

in the beginning of this section.

� We must compute quantities of the formuT f (A)v , with u 6= v, using the

decomposition (2.21) in order to guarantee that for each integral, the measure

is real, positive and increasing. Use of this decompositionwill also guarantee

that the Jacobi matrix JK computed by Algorithm 2.1 is symmetric positive

de�nite.

30 CHAPTER 2. KRYLOV SUBSPACE METHODS

� Because (2.21) applies to real vectorsu and v, we will compute the components

of the discrete sine and cosine transforms of ~u(x; t), rather than the standard

discrete Fourier transform.

2.4.1 Fourier Series and Trigonometric Interpolation

E�ectively, Algorithm 2.2 computes an approximation of the Fourier interpolant of

u(x; t),

Int N u(x; t) =
1

p
2�

N=2� 1X

! = � N=2+1

ei!x û(!; t) (2.35)

where the coe�cients û(!; t) are obtained by computing the discrete Fourier transform

of u(x; t). The following result from [27] provides a bound for the interpolation error.

Theorem 2.1 (Gustafsson, Kreiss, Oliger) Let u be a 2� -periodic function and

assume that its Fourier coe�cients satisfy an estimate

jû(!)j �
C

j! jm
; ! 6= 0; m > 1: (2.36)

Then

ku(�) � Int N u(�)k1 �
2C

p
2�

(N=2)1� m

�
1

m � 1
+

2(N + 1)
N

Bm

�
; (2.37)

where

Bm =
1X

j =1

1
(2j � 1)m

(2.38)

Depending on the smoothness of the exact solutionu(x; t), this interpolation error

can be a source of signi�cant spatial discretization error,particularly for hyperbolic

problems.

The following result from [27] will also be useful in our analysis.

2.4. CONVERGENCE ANALYSIS 31

Theorem 2.2 (Gustafsson, Kreiss, Oliger) Let f (x) have the Fourier series

f (x) =
1

p
2�

1X

! = �1

f̂ (!)ei!x (2.39)

and let Int N f (x) be its Fourier interpolant of degreeN ,

Int N f (x) =
1

p
2�

N=2� 1X

! = � N=2+1

~f (!)ei!x : (2.40)

Then

~f (!) =
1X

`= �1

f̂ (! + N`); ! = � N=2 + 1; : : : ; N=2 + 1: (2.41)

In particular, if f̂ (!) = 0 for j! j � N=2, then IntN f � f .

2.4.2 Application of Di�erential Operators

The interpolation error described above is not the only source of spatial discretization

error that we must address in our analysis. Suppose that we discretize the operator

L(x; D) on a uniform grid of the form

x j = jh; j = 0; : : : ; N � 1; h = 2�=N; (2.42)

representingL(x; D) by an N � N matrix LN . At each time tn for which we compute

the approximate solution ~u(x; t), the error in the coe�cients û(!; t n) � un
! includes

spatial discretization error that arises from the discretization of L(x; D) and the

previous solutionu(x; t n� 1). Speci�cally, if fN is a gridfunction representing a function

f (x) and gN = LN f , then gN is a gridfunction that represents a functiong(x), where

g(x) = Int N (L(x; D)[Int N f (x)]) ; (2.43)

where IntN f (x) denotes theN -th degree Fourier interpolant off (x) de�ned in (2.40).

32 CHAPTER 2. KRYLOV SUBSPACE METHODS

We now examine in detail the process of applying anm-th order di�erential oper-

ator L(x; D) of the form (1.3) to a function f (x) that is represented by gridfunction

fN on anN -point uniform grid (2.42). From fN we can obtain the Fourier coe�cients

of

f N (x) = Int N f (x) =
1

p
2�

N=2X

! = � N=2+1

ei!x ~f (!); (2.44)

where (see [27])

~f (!) =
h

p
2�

N � 1X

j =0

e� i!jh f (jh): (2.45)

It follows that for 0 � � � m,

D � f N (x) =
1

p
2�

N=2X

! = � N=2+1

ei!x (i!)� ~f (!): (2.46)

Let a� be the gridfunction representing IntN a� (x), and let f � be the gridfunction

representingD � f N (x). Obviously, we can compute a gridfunction representing

[Int N a� (x)]D � f N (x) � a� (x)D � f (x) (2.47)

simply by multiplying a� and f � component-wise. However, this course of action re-

sults in a needless loss of information about the product [IntN a� (x)]D � f N (x), because

we can obtain thecompleteset of Fourier coe�cients of this function by re�ning our

grid.

We can proceed by computing Int2N [Int N a� (x)] and Int 2N D � f N (x). This is easily

accomplished by performing a 2N -point inverse FFT on the known Fourier coe�-

cients of these functions. Then, we can perform component-wise multiplication on

the re�ned gridfunctions and perform a 2N -point FFT to obtain the full set of Fourier

coe�cients of the product.

By performing this grid re�nement whenever we need to multiply two gridfunc-

tions, we ensure the most accurate inner products possible given the information we

have about the coe�cients a� (x), � = 0; : : : ; m, and any functions to whichL(x; D)

2.4. CONVERGENCE ANALYSIS 33

is to be applied. This technique is crucial when the coe�cients of L(x; D) are not

smooth, as will be illustrated in Chapter 5.

For convenience, we will refer to the approach of computing the component-wise

product of a� and f � as the�xed-grid implementation, while the approach of re�ning

the grid and then computing the component-wise product of the interpolants on the

�ner grid will be called the variable-grid implementation.

2.4.3 The Modi�ed Algorithms

We will now state versions of Algorithms 2.1 and 2.2 that havebeen modi�ed accord-

ing to the conditions given at the beginning of this section.In the modi�ed version

of Algorithm 2.1, we will use a variable grid implementation, initially representing

functions on a uniformN -point grid of the form (2.42). A function f (x) de�ned on

[0; 2�] will be represented by the corresponding gridfunctionfN , which is anN -vector

with components [fN]j = f (x j), for j = 0; : : : ; N � 1. The grid will be re�ned as

needed to obtain complete sets of Fourier coe�cients of functions obtained by apply-

ing L(x; D), as discussed above. As a result, the modi�ed algorithm will employ a

sequence of grids withM j = 2 j N points, wherej = 0; 1; : : : ; K .

We will use (1.22) to compute the discrete inner product of two gridfunctions, and

discretize a di�erential operator L(x; D) of the form (1.3) using anM j � M j matrix

LM j with entries de�ned by (2.5), where the discrete di�erentiation operator DM j is

given by

DM j = T � 1
M j

� M j TM j ; (2.48)

whereTM j denotes the discrete Fourier transform ofM j points and � M j is a diagonal

matrix with diagonal elementsi! , for ! = � M j =2 + 1; : : : ; M j =2 � 1.

Given a gridfunction fN , the gridfunction fM , for M > N , is de�ned by interpo-

lating the values offN on the �ner M -point grid:

[fM]j =
1

p
2�

N=2� 1X

! = � N=2+1

ei!jh M

"
hNp
2�

N � 1X

k=0

e� i!kh N [fN]k

#

; j = 0; : : : ; M � 1; (2.49)

34 CHAPTER 2. KRYLOV SUBSPACE METHODS

wherehM = 2�=M and hN = 2�=N . Using this multilevel discretization ofL(x; D),

we can now describe our modi�ed version of Algorithm 2.1.

Algorithm 2.3 Given real-valued gridfunctionsuN and vN de�ned on an N -point

uniform grid (2.42) such that the measure (2.9) is positive and increasing, a self-

adjoint di�erential operator L(x; D) of the form (1.3) and a time t, the following

algorithm computes boundsz1 and z2 on uT
M K

exp[� LM K t]vM K .

 0� 0 = uH
N vN

f 1
N = vN =� 0

g1
N = uN = 0

f 0
N = 0

g0
N = 0

M = 2N

for j = 1; : : : ; K

h j
M = LM f j

M

� j = [gj
M]T h j

M

r j
M = h j

M � � j f
j
M � j � 1f

j � 1
M

p j
M = LM gj

M � � j g
j
M + � j � 1g

j � 1
M

 j � j = [p j
M]H r j

M

f j +1
M = r j

M =� j

gj +1
M = p j

M = j

M = 2M

end

Let JK be the K � K matrix de�ned by (2.20)

z1 = h 0� 0[exp(� JK t)]11

Let a be an approximation to the smallest eigenvalue ofL

Solve (JK � aI)� = K � K eK

� K +1 = a + � K

Let JK +1 be the matrix obtained fromJK by adding

� K +1 to the diagonal, � K to the superdiagonal

and K to the subdiagonal

2.4. CONVERGENCE ANALYSIS 35

z2 = h 0� 0[exp(� JK +1 t)]11

We now state the modi�ed version of Algorithm 2.2, employing(2.21) to compute the

Fourier components of ~u(x; t n). In this modi�ed algorithm, we use the gridfunctions

[ĉ!]j =
1

p
�

cos(!jh); j = 0; : : : ; N � 1; ! = 1; : : : ; N=2 � 1; (2.50)

[ŝ!]j =
1

p
�

sin(!jh); j = 0; : : : ; N � 1; ! = 1; : : : ; N=2 � 1; (2.51)

and

[ê0]j =
1

p
2�

; j = 0; : : : ; N � 1: (2.52)

Also, it will be assumed that all bounds on quantities of the form uH
M K

SM K (� t)uM K

are computed using Algorithm 2.3.

Algorithm 2.4 Given a gridfunction fN representing the initial data f (x) on a uni-

form N -point grid of the form (2.42), a �nal time t f inal and a timestep � t such that

t f inal = n� t for some integern, the following algorithm computes an approximation

~un+1
j to the solution u(x; t) of (1.1), (1.2), (1.4) evaluated at each gridpointx j = jh

for j = 0; 1; : : : ; N � 1 with h = 2�=N and timestn = n� t for n = 0; 1; : : : ; tf inal =� t.

~u0 = fN

for n = 0; 1; : : : ; tf inal =� t do

Choose a constant� 0

Compute boundse11 and e12 for (ê0 � � 0~un)H
M K

SM K (� t)(ê0 � � 0~un)M K

Compute boundse21 and e22 for (ê0 + � 0~un)H
M K

SM K (� t)(ê0 + � 0~un)M K

Let ûn+1
0 = (e2i � e1j)=(4� 0) where i and j

are chosen to minimize error in̂un+1
0

for ! = 1; : : : ; N=2 � 1

Choose a constant� !

Compute boundsc11 and c12 for (ĉ! � � ! ~un)H
M K

SM K (� t)(ĉ! � � ! ~un)M K

Compute boundss11 and s12 for (ŝ! � � ! ~un)H
M K

SM K (� t)(ŝ! � � ! ~un)M K

36 CHAPTER 2. KRYLOV SUBSPACE METHODS

Compute boundsc21 and c22 for (ĉ! + � ! ~un)H
M K

SM K (� t)(ĉ! + � ! ~un)M K

Compute boundss21 and s22 for (ŝ! + � ! ~un)H
M K

SM K (� t)(ŝ! + � ! ~un)M K

Let c! = (c2i � c1j)=(4� !) where i and j

are chosen to minimize error inc!

Let s! = (s2i � s1j)=(4� !) where i and j

are chosen to minimize error ins!

ûn+1
! = c! + is !

ûn+1
� ! = c! � is !

end

~un+1 = T � 1ûn+1

end

Various strategies can be used to determine whether the upper or lower bound on each

integral should be used in computing the approximation to each component of the

solution. For example, a Gauss-Radau rule with an appropriate choice of prescribed

node can be compared with the approximation computed using aGaussian rule in

order to estimate its accuracy. Alternatively, Gauss-Kronrod rules can be used from

the previously constructed Gaussian rules to estimate the accuracy of each bound;

for details see [5].

2.4.4 Consistency

We will now state and prove a result describing the local truncation error incurred in

each time step during the execution of Algorithm 2.4. For convenience, we denote by

VN the space of real-valued 2� -periodic functions of the form

f (x) =
1

p
2�

N=2X

! = � N=2+1

ei!x f̂ (!); 0 < x < 2�; (2.53)

and assume that the initial dataf (x) and the coe�cients a� (x), � = 0; : : : ; m, of the

operator L(x; D) belong to VN .

Under this assumption, we have the following sources of discretization error to

consider:

2.4. CONVERGENCE ANALYSIS 37

� Let us recall the error term (2.16) from the Gaussian quadrature rule:

R[f] =
f (2K)(�)
(2K)!

Z b

a

"
KY

j =1

(� � t j)

#2

d� (�); a < � < b: (2.54)

Substituting f (�) = e� � � t , we obtain

R[f] =
� t2K e� � t�

(2K)!

Z b

a

"
KY

j =1

(� � t j)

#2

d� (�); a < � < b; (2.55)

from which it follows that the temporal local truncation error in each upper

bound computed using Algorithm 2.3 isO(� t2K). Similarly, the temporal lo-

cal truncation error for each lower bound isO(� t2K +1), due to the additional

prescribed node in Gauss-Radau quadrature.

� In addition, spatial discretization error arises from the truncation of the Fourier

series in computing

~u(x; t n) =
1

p
2�

N=2� 1X

! = � N=2+1

ei!x ûn
! : (2.56)

Our assumptions on the initial data and coe�cients ofL(x; D), in conjunction

with the variable-grid implementation of Algorithm 2.3, eliminate any addi-

tional spatial discretization error.

We will use the bounds (2.37) and (2.55) to prove that Algorithm 2.4 does in fact

solve (1.1), (1.2), (1.4) in the limit as � x, � t ! 0. We will denote by ~S(� t; � x; f)

the result of applying Algorithm 2.4 to the function f (x) using a discretization of

space and time with spacingsh and � t, respectively. To prove that Algorithm 2.4 is

consistent, we will make use of the following lemmas.

Lemma 2.1 Let f 2 VN and L(x; D) be an m-th order di�erential operator of the

form (1.3) such that each coe�cient a� (x), � = 0; : : : ; m, belongs to VN . Then

38 CHAPTER 2. KRYLOV SUBSPACE METHODS

L(x; D)f 2 V2N and

ĥe! ; L(x; D)f i = êH
! LM fM ; ! = � M=2 + 1; : : : ; M=2 � 1; (2.57)

for M = 2 j N , where j is a positive integer.

Proof For j = 1, we have

L(x; D)f (x) =
mX

� =0

a� (x)D � f (x)

=
mX

� =0

0

@ 1
p

2�

N=2� 1X

! = � N=2+1

â� (!)ei!x

1

A

0

@ 1
p

2�

N=2� 1X

� = � N=2+1

f̂ (�)(i�)� ei�x

1

A

=
mX

� =0

8
<

:
1

p
2�

N=2� 1X

! = � N=2+1

2

4 1
p

2�

N=2� 1X

� = � N=2+1

â� (!)f̂ (�)(i�)� ei (! + �)x

3

5

9
=

;

=
mX

� =0

8
<

:
1

p
2�

N=2� 1X

! = � N=2+1

"
1

p
2�

N � 1X

� = � N +1

â� (!)f̂ (� � !)(i�)� ei�x

#9
=

;

=
mX

� =0

8
<

:
1

p
2�

N � 1X

� = � N +1

1
p

2�

2

4
N=2� 1X

! = � N=2+1

â� (!)f̂ (� � !)(i�)�

3

5 ei�x

9
=

;
;

thus L(x; D)f 2 V2N . Theorem 2.2 immediately yields (2.57).2

Lemma 2.2 Let A be ann � n symmetric positive de�nite matrix. Let u and v be

�xed vectors, and de�ne u � = u + � v . For j a positive integer, let ~gj (�) be de�ned by

~gj (�) =
1
2

eT
1 T j

� e1ku � k2
2; (2.58)

whereT� is the Jacobi matrix produced by the symmetric Lanczos iteration applied

to A with starting vector u � . Then, for some� satisfying 0< � < � ,

~gj (�) � ~gj (� �)
2�

= uT A j v +

2.4. CONVERGENCE ANALYSIS 39

j � KX

k= K

eT
1

�
T kX T � X T Ak

� 0
reT

K T j � k� 1e1uT u + (2.59)

� 2

6

"
j � KX

k= K

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1uT
� u �

#00
�
�
�
�
�
�
� = �

Proof From X T
� X � = I we obtain

dT j
�

d�
=

j � 1X

k=0

T k
�

d(X T
� AX �)
d�

T j � k� 1
�

=
j � 1X

k=0

T k
� [(X 0

�)
T AX � + X T

� AX 0
�]T

j � k� 1
�

=
j � 1X

k=0

T k
� [(X 0

�)
T (X � T� + r � eT

K) + (eK r T
� + T� X T

�)X 0
�]T

j � k� 1
�

=
j � 1X

k=0

T k
� [(X 0

�)
T X � T� + (X 0

�)
T r � eT

K + eK r T
� X 0

� + T� X T
� X 0

�]T
j � k� 1
�

=
j � 1X

k=0

T k
� (X 0

�)
T X � T

j � k
� + T k

� (X 0
�)

T r � eT
K T j � k� 1

� +

T k
� eK r T

� X 0
� T

j � k� 1
� + T k+1

� X T
� X 0

� T
j � k� 1
�

= (X 0
�)

T X � T
j
� + T j

� X T
� X 0

� +
j � 1X

k=0

T k
� (X 0

�)
T r � eT

K T j � k� 1
� + T k

� eK r T
� X 0

� T
j � k� 1
� :

From symmetry, it follows that

1
2

d
d�

�
eT

1 T j
� e1

�
= eT

1 (X 0
�)

T X � T
j
� e1 +

j � 1X

k=0

eT
1 T k

� (X 0
�)

T r � eT
K T j � k� 1

� e1: (2.60)

From repeated application of the relationAX � = X � T� + r � eT
K , we obtain

A j X � = X � T
j
� +

j � 1X

k=0

Akr � eT
K T j � k� 1

� ; (2.61)

40 CHAPTER 2. KRYLOV SUBSPACE METHODS

which yields

1
2

d
d�

�
eT

1 T j
� e1

�
= eT

1 (X 0
�)

T X � T
j
� e1 +

j � 1X

k=0

eT
1 T k

� (X 0
�)

T r � eT
K T j � k� 1

� e1

= eT
1 (X 0

�)
T

"

A j X � �
j � 1X

k=0

Akr � eT
K T j � k� 1

�

#

e1 +

j � 1X

k=0

eT
1 T k

� (X 0
�)

T r � eT
K T j � k� 1

� e1

= eT
1 (X 0

�)
T A j X � e1 +

j � 1X

k=0

eT
1 T k

� (X 0
�)

T r � eT
K T j � k� 1

� e1 � eT
1 (X 0

�)
T Akr � eT

K T j � k� 1
� e1

= eT
1 (X 0

�)
T A j X � e1 +

j � 1X

k=0

eT
1

�
T k

� (X 0
�)

T � (X 0
�)

T Ak
�

r � eT
K T j � k� 1

� e1

= eT
1 (X 0

�)
T A j X � e1 +

j � 1X

k=0

eT
1

�
(T k

�)0X T
� + T k

� (X 0
�)

T � (X 0
�)

T Ak
�

r � eT
K T j � k� 1

� e1

= eT
1 (X 0

�)
T A j X � e1 +

j � 1X

k=0

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1

= eT
1 (X 0

�)
T A j X � e1 +

j � KX

k= K

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1:

From the relations

X � e1 =
u �

ku � k2
; X 0

� e1 =
1

ku � k2

�
v �

uT v + � vT v
ku � k2

2
u �

�
; (2.62)

2.4. CONVERGENCE ANALYSIS 41

we obtain

~g0
j (�) =

1
2

"

eT
1

dT j
�

d�
e1ku � k2

2 + 2eT
1 T j

� e1(uT v + � vT v)

#

= eT
1 (X 0

�)
T A j X � e1uT

� u � +
j � KX

k= K

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1uT
� u � +

eT
1 T j

� e1(uT v + � vT v)

=
�

v �
uT v + � vT v

uT
� u �

u �

� T

A j u � +

j � KX

k= K

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1uT
� u � +

uT
� A j u �

uT v + � vT v
uT

� u �

= uT
� A j v +

j � KX

k= K

eT
1

�
T k

� X T
� � X T

� Ak
� 0

r � eT
K T j � k� 1

� e1uT
� u � :

The lemma follows immediately from the Taylor expansion of ~gj (�). 2

Corollary 2.1 Under the assumptions of the lemma,

~gj (�) � ~gj (� �)
2�

= uT A j v; (2.63)

for 0 � j < 2K .

We can now bound the local truncation error in each Fourier component of the com-

puted solution.

Theorem 2.3 Let L(x; D) be a self-adjointm-th order positive de�nite di�erential

operator with coe�cients in VN , and let f (x) 2 VN . Then Algorithm 2.4 is consistent;

i.e.

ĥe! ; ~S(� t; � x; f) � S(�; D; � t)f i = O(� t2K); ! = � N=2 + 1; : : : ; N=2 � 1: (2.64)

42 CHAPTER 2. KRYLOV SUBSPACE METHODS

Proof Let ~g(�) be the function from Lemma 2.1 withA = LM K , u = c! and v = f .

Furthermore, de�ne
~hj = f T L j

M K
f (2.65)

and denote the entriesT� ! by

T� ! =

2

6
6
6
6
6
6
6
4

� 1(� !) � 1(� !)

� 1(� !) � 2(� !) � 2(� !)
.

� K � 2(� !) � K � 1(� !) � K � 1(� !)

� K � 1(� !) � K (� !)

3

7
7
7
7
7
7
7
5

: (2.66)

Finally, let � 0(� !) = ku � ! k2 and � K (� !) = kr � ! k2. Then, by Lemmas 2.1 and 2.2, and

Corollary 2.1,

ĥc! ; u(�; � t)i � c! =
1X

j =0

� t j

j !

�
ĥc! ; L(x; D) j f i �

~gj (� !) � ~gj (� � !)
2� !

�

=
1X

j =0

� t j

j !

�
ĥc! ; L(x; D) j f i � cT

! L j
M K

f +

j � KX

k= K

eT
1

d
d� !

�
T k

� !
X T

� !
� X T

� !
L k

M K

�
�
�
�
�
� ! =0

reT
K T j � k� 1e1

)

+

O(� ! � t2K)

=
� t2K

(2K)!
eT

1
d

d� !

�
TK

� !
X T

� !
� X T

� !
LK

M K

�
�
�
�
�
� ! =0

reT
K TK � 1e1 +

O(� ! � t2K)

=
� t2K

(2K)!
eT

1
d

d� !

"
K � 1X

j =0

T j
� !

eK r T
� !

LK � j � 1
M K

#�
�
�
�
�
� ! =0

reT
K TK � 1e1 +

O(� ! � t2K)

=
� t2K

(2K)!
eT

1
d

d� !

�
TK � 1

� !
eK r T

� !

�
�
�
�
�
� ! =0

reT
K TK � 1e1 + O(� ! � t2K)

=
1
2

� t2K

(2K)!
d

d� !

�
kr � ! keT

1 TK � 1
� !

eK

� 2
�
�
�
�
� ! =0

+ O(� ! � t2K)

2.4. CONVERGENCE ANALYSIS 43

=
1
2

� t2K

(2K)!
d

d� !
(� 0(� !) � � � � K (� !))2

�
�
�
�
� ! =0

+ O(� ! � t2K)

= O(� t2K): (2.67)

A similar argument applies toĥs! ; u(�; � t)i � s! . 2

It is important to note that the spatial error depends heavily on the smoothness of

the coe�cients of the operator L(x; D), as well as the initial data f (x).

2.4.5 Stability

We now examine the stability of this time-stepping algorithm.

Theorem 2.4 Let L(x; D) be a self-adjoint positive de�nite di�erential operator with

coe�cients in VN , having smallest eigenvalue� 1. Then, for � t > 0 and � x = 2�=N ,

k ~S(� t; � x; u) � ~S(� t; � x; v)k � e� � 1 � tku � vk + O(� t2K); (2.68)

whereu and v are 2� -periodic functions belonging toVN and

� =
h

� � N=2+1 � � � � N=2� 1

i
: (2.69)

Proof Let ~gj (�) be the function from Lemma 2.2. From the lemma, ~g0
j (0) is linear in

v . The result then follows at once from Theorem 2.3.2

2.4.6 Convergence

We are now ready to state and prove the principal result of this thesis. As with the

Lax-Richtmyer Equivalence Theorem for �nite-di�erence methods, the consistency

and stability of Algorithm 2.4 can be used to prove that it is also convergent.

Theorem 2.5 Let u(x; t) be the solution of (1.1), (1.2), (1.4), whereL(x; D) is

a self-adjoint positive de�nite di�erential operator with coe�cients in VN and the

initial data f (x) belongs to VN . Furthermore, assume that the Fourier coe�cients

44 CHAPTER 2. KRYLOV SUBSPACE METHODS

f û(!; � t)g of u(x; � t) = S(x; D ; � t)f (x) satisfy an estimate

jû(!; � t)j �
C

j! jM
; ! 6= 0; 0 � � t � t f inal ; M > 1: (2.70)

Let ~u(x; t f inal) be the approximate solution computed by Algorithm 2.4. If

lim
� x; � t ! 0

� xM � 1

� t
= 0; � x =

2�
N

; (2.71)

then Algorithm 2.4 is convergent; i.e.

lim
� x; � t ! 0

k~u(�; t f inal) � u(�; t f inal)k = 0: (2.72)

Proof Let en (x) = ~u(x; t n) � u(�; tn): Then, by Theorems 2.1, 2.3 and 2.4, there exist

constantsC1 and C2 independent of � x and � t such that

ken+1 k = k~u(�; tn+1) � u(�; tn+1)k

= k ~S(� t; � x; ~u(�; tn)) � S(x; D ; � t)u(�; tn)k

� k ~S(� t; � x; ~u(�; tn)) � ~S(� t; � x; u(�; tn))k +

k ~S(� t; � x; u(�; tn)) � S(x; D ; � t)u(�; tn)k

� e� � 1 � tkenk + C1� t2K + C2� xM � 1

which yields

kenk �
e� � 1 t f inal � 1
e� � 1 � t � 1

�
C1� t2K + C2� xM � 1

�

which tends to zero under the given assumptions.2

2.4.7 Summary

While Algorithm 2.4 has been shown to converge under modest assumptions on the

coe�cients of L(x; D), convergence tends to be more rapid when the coe�cients of

2.4. CONVERGENCE ANALYSIS 45

L(x; D) are smooth. To see this, consider an integral of the form

I ! (� t) = êH
! e� L M K � t ê! =

Z � N

� 1

e� � � t d� ! (�); j! j < N= 2; (2.73)

whereê! was de�ned in (2.4). Algorithm 2.3 computes an approximation this integral,

~I ! (� t) = eH
1 e� T � te1; (2.74)

whereT is the K � K Jacobi matrix produced by the symmetric Lanczos algorithm

applied to the matrix LM K de�ned in (2.5) with initial vector e! , de�ned in (2.4).

Thus we have

LM K X = XT + reH
K ; X H X = I K ; X e1 = ê! : (2.75)

We can express the errorE ! (� t) = ĥe! ; S(x; D ; � t)ê! i � ~I ! (� t) as

E ! (� t) = ĥe! ; f (L(x; D))ê! i � ~I ! (� t)

=
1X

j =0

� t j

j !
(ĥe! ; L(x; D) j ê! i � eH

1 T j e1)

=
1X

j =0

� t j

j !
(ĥe! ; L(x; D) j ê! i � êH

! L j
M K

ê! +

êH
! L j

M K
ê! � eH

1 X H XT j e1)

=
1X

j =0

� t j

j !
(ĥe! ; L(x; D) j ê! i � êH

! L j
M K

ê! +

êH
! (L j

M K
X � XT j)e1)

=
1X

j =0

� t j

j !

h
ĥe! ; L(x; D) j ê! i � êH

! L j
M K

ê! +

êH
!

j � 1X

k=0

L k
M K

reH
K T j � k� 1

!

e1

#

(2.76)

(2.77)

46 CHAPTER 2. KRYLOV SUBSPACE METHODS

This expression yields the following result:

Theorem 2.6 Let L(x; D) = C(x; D) + V(x; D), where

C(x; D) =
mX

� =0

c� D � ; V(x; D) =
mX

� =0

v� (x)D � : (2.78)

Then, for �xed N and j! j < N= 2,

E ! (� t) = O(� t2K kVM K k): (2.79)

Proof We �rst consider the expressioneH
K T j e1, where j is a positive integer and

K > 1. Then

� 1 = T21 = kVM K ê! k2: (2.80)

It follows from the fact that T is tridiagonal that

j[T j]K 1j � k VM K kk3LM K kj � 1 (2.81)

and therefore, for 0� k < j � 1,

jêH
! L k

M K
r [T j � k� 1]K 1j � 3j � k� 12K kVM K kkLM K kj � 2: (2.82)

If K = 1, then r = VM K ê! , and therefore

jêH
! L k

M 1
r [T j � k� 1]11j � k VM 1kkLM 1 kj � 2: (2.83)

Next, we consider the expressionE !;j = ĥe! ; L(x; D) j ê! i � êH
! L j

M K
ê! , where j is a

nonnegative integer. By Lemma 2.1,E !;j = 0 for j � 2K . For j > 2K , we de�ne

f !;` (x) = L(x; D)` ê! (x) for any nonnegative integer̀ . Furthermore, for even positive

integers M we de�ne the following operators on the space of continuous functions

de�ned on [0; 2�]:

2.4. CONVERGENCE ANALYSIS 47

� PM is the orthogonal projection ontoVM :

PM f (x) =
1

p
2�

M=2� 1X

! = � M=2+1

ei!x f̂ (!): (2.84)

� � M is the composition ofPM and the M -point interpolation operator, using an

M -point uniform grid of the form (2.42):

� M f (x) =
1

p
2�

M=2� 1X

! = � M=2+1

ei!x

h

p
2�

M � 1X

j =0

e� i! 2�jh f (jh)

!

; h =
2�
M

: (2.85)

By Theorem 2.2, if f 2 VM , then � M f = f .

Using these de�nitions, we obtain

E !;j = ĥe! ; L(x; D) j ê! i � êH
! L j

M K
ê!

= hf !;K ; [L(x; D) j � 2K � (� M K L(x; D)� M K) j � 2K]f !;K i

= hf !;K ; [(C(x; D) + V(x; D))L(x; D) j � 2K � 1 �

� M K (C(x; D) + V(x; D))� M K (� M K L(x; D)� M K) j � 2K � 1]f !;K i : (2.86)

Let j = 2K + 1. By Lemma 2.1, f !;K (x) 2 VM K , from which it follows that

C(x; D)� f !;x 2 VM K , and therefore

E !; 2K +1 = hf !;K ; [V (x; D) � � M K V(x; D)� M K]f !;K i (2.87)

from which it follows that

jE !; 2K +1 j � 2kVM K kkLM K k2K : (2.88)

In general, we have

E !;j = hf !;K ; [L(x; D) j � 2K � (� M K L(x; D)� M K) j � 2K]f !;K i

= hf !;K ; [C(x; D) j � 2K � (� M K C(x; D)� M K) j � 2K]f !;K i +

48 CHAPTER 2. KRYLOV SUBSPACE METHODS

hf !;K ; [E j � 2K (x; D) � EM K ;j � 2K (x; D)]f !;K i

= hf !;K ; [E j � 2K (x; D) � EM K ;j � 2K (x; D)]f !;K i (2.89)

(2.90)

where

E j � 2K (x; D) = L(x; D) j � 2K � C(x; D) j � 2K ; (2.91)

and

EM K ;j � 2K (x; D) = (� M K L(x; D)� M K) j � 2K � (� M K C(x; D)� M K) j � 2K : (2.92)

It follows that for �xed � t, E ! (� t) ! 0 linearly with kVM K k. By Lemma 2.1, the

terms in (2.76) that are of order< 2K in � t vanish, which completes the proof.2

An mth-order operator L(x; D) of the form (1.3) can be written as L(x; D) =

C(x; D) + V(x; D) where

C(x; D) =
mX

� =0

c� D � ; c� =
1

p
2�

Z 2�

0
a� (x) dx; � = 0; : : : ; m; (2.93)

and

V(x; D) =
mX

� =0

v� (x)D � ; v� (x) = a� (x) � c� ; � = 0; : : : ; m: (2.94)

Suppose that each coe�cienta� (x) of L(x; D) has Fourier coe�cients f â� (!)g that

satisfy

jâ� (!)j �
C�

j! jp�
; ! 6= 0; (2.95)

where eachC� is a nonnegative constant, with the convention thatC� = 0 if a� (x) is

a constant. Then

kVN k1 � mC(N=2)qmax +1 (2.96)

2.4. CONVERGENCE ANALYSIS 49

where the constantC depends on the constantsC� and N , and

qmax = max
0� � � m;C � 6=0

� � p� : (2.97)

In the next chapter, we will attempt develop techniques to precondition L(x; D) so

that it has smoother coe�cients, in an e�ort to reduce kVN k1 .

Chapter 3

Preconditioning

In Chapter 2 we presented algorithms described for solving the initial-boundary value

problem (1.1), (1.2), (1.4) using Gaussian quadrature, andshowed that these algo-

rithms yield greater accuracy in the computed solution whenthe operatorL(x; D) has

smooth coe�cients. In this chapter, we will develop an algorithm for preconditioning

a di�erential operator L(x; D) to obtain a new operator~L(x; D) = UL(x; D)U� 1 that,

in some sense, more closely resembles a constant-coe�cientoperator. To accomplish

this, we will rely on ideas summarized by Fe�erman in [10].

3.1 The Uncertainty Principle

The uncertainty principle says that a function , mostly concentrated injx � x0j < � x ,

cannot also have its Fourier transform ̂ mostly concentrated inj� � � 0j < � � unless

� x � � � 1. Fe�erman describes a sharper form of the uncertainty principle, called the

SAK principle, which we will now describe. Assume that we are given a self-adjoint

di�erential operator

A(x; D) =
X

j � j� m

a� (x)
�

@
@x

� �

; (3.1)

with symbol

A(x; �) =
X

j � j� m

a� (x)(i�)� : (3.2)

50

3.1. THE UNCERTAINTY PRINCIPLE 51

The SAK principle, which derives its name from the notation used by Fe�erman in

[10] to denote the set

S(A; K) = f (x; �)jA(x; �) < K g; (3.3)

states that the number of eigenvalues ofA(x; D) that are less thanK is approximately

equal to the number of distorted unit cubes that can be packeddisjointly inside the set

S(A; K). SinceA(x; D) is self-adjoint, the eigenfunctions ofA(x; D) are orthogonal,

and therefore theSAK principle suggests that these eigenfunctions are concentrated

in disjoint regions of phase space de�ned by the setsf S(A; �)j� 2 � (A)g.

As in previous chapters, we consider only di�erential operators de�ned on the

space of 2� -periodic functions. We therefore use a modi�ed de�nition of the set

S(A; K),

S(A; K) = f (x; �)j0 < x < 2�; jA(x; �)j < jK jg: (3.4)

The absolute values are added because symbols of self-adjoint operators are complex

when the leading coe�cient is not constant.

In the case of a constant-coe�cient operatorA(x; D), the setsS(A; K) are simple

rectangles in phase space. This simple geometry of a constant-coe�cient symbol is il-

lustrated in Figure 3.1. The eigenfunctions ofA(x; D), which are simply the functions

ê� (x) = exp(i�x), are concentrated in frequency, along the lines� = constant. Figure

3.2 shows the volumes of the setsS(A; � j) for selected eigenvalues� j , j = 1; : : : ; 32,

of A(x; D). The eigenvalues are obtained by computing the eigenvalues of a matrix

of the form

Ah =
mX

� =0

A � D �
h (3.5)

that is a discretization ofA(x; D) on an N -point uniform grid, with N = 64. For each

� , A � = diag(a� (x0); : : : ; a� (xN � 1)) and Dh is a discretization of the di�erentiation

operator. Note that in nearly all cases, the set di�erences

S(A; � j) � S(A; � j � 1) = f (x; �)jj � j � 1j � j A(x; �)j < j� j jg (3.6)

have the area 2� .

52 CHAPTER 3. PRECONDITIONING

0
1

2
3

4
5

6
7

0

5

10

15

20

25

30
0

200

400

600

800

1000

x

Symbol of A(x,D)=D2-1

x

|A
(x

,x
)|

Figure 3.1: Symbol of a constant-coe�cient operatorA(x; D) = D 2 � 1

3.1. THE UNCERTAINTY PRINCIPLE 53

0 5 10 15 20 25 30 35
0

50

100

150

200

j

V
ol

(S
(A

,l
j))

Volume of S(A,l
j
) for each eigenvalue l

j
, constant-coefficient operator

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

j

V
ol

(S
(A

,l
j))

-V
ol

(S
(A

,l
j-1

))

Figure 3.2: The volume of the setsS(A; K), as de�ned in (3.4), whereA(x; D) =
D 2� 1 andK = � j (A) for j = 1; : : : ; 32. The top �gure plots the volume ofS(A; � j) as
a function of j , and the bottom �gure plots the change in volume between consecutive
eigenvalues.

54 CHAPTER 3. PRECONDITIONING

0
1

2
3

4
5

6
7

0

5

10

15

20

25

30
0

200

400

600

800

1000

1200

1400

x

Symbol of A(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)

x

|A
(x

,x
)|

Figure 3.3: Symbol of a variable-coe�cient operatorA(x; D) = D((1 + 1
2 sinx)D) ��

1 + 1
2 sinx

�

Now, consider a variable-coe�cient operatorA(x; D), with a symbol A(x; �) such

as the one illustrated in Figure 3.3. TheSAK principle suggests that the eigenfunc-

tions of A(x; D) are concentrated in curved boxes of volume� 1, where the geometry

of these boxes is determined by the setsS(A; K). Corresponding to Figure 3.2, Fig-

ure 3.4 shows the volumes of the setsS(A; � j) for the variable-coe�cient operator

A(x; D) featured in Figure 3.3. As in the constant-coe�cient case,the set di�er-

encesS(A; � j) � S(A; � j � 1) have approximate area 2� . This ceases to be true for the

largest eigenvalues, but those eigenvalues are not good approximations to the actual

eigenvalues ofA(x; D) due to the limited resolution of the discretization.

These �gures suggest that it is possible to construct a change of variable � :

3.1. THE UNCERTAINTY PRINCIPLE 55

0 5 10 15 20 25 30 35
0

50

100

150

200

250

j

V
ol

(S
(A

,l
j))

Volume of S(A,l
j
) for each eigenvalue l

j
, variable-coefficient operator

0 5 10 15 20 25 30 35
0

5

10

15

20

j

V
ol

(S
(A

,l
j))

-V
ol

(S
(A

,l
j-1

))

Figure 3.4: Volume of the setsS(A; K) where A(x; D) = D
��

1 + 1
2 sinx

�
D

�
��

1 + 1
2 sinx

�
and K = � j for j = 1; : : : ; 32. The top �gure plots the volume of

S(A; � j) as a function ofj , and the bottom �gure plots the change in volume between
consecutive eigenvalues.

56 CHAPTER 3. PRECONDITIONING

(y; �) ! (x; �) in phase space in order to \bend"A(x; �) so that it more closely

resembles the symbol of a constant-coe�cient operator. If � preserves volume in

phase space, then the volume of each setS(A; K) is invariant under �, and therefore

an operator with the symbolA � � should have approximately the same eigenvalues

asA(x; D). This leads us to ask whether such a transformation of the symbol A(x; �)

can induce a similarity transformation of the underlying operator A(x; D).

3.2 Egorov's Theorem

Egorov answered this question in the a�rmative (see [9], [10]), in the case where �

is a canonical transformation, i.e. a change of variable in phase space that preserves

Poisson brackets:

f F; Gg � � = f F � � ; G � � g: (3.7)

A consequence of this de�nition is that canonical transformations preserve volume in

phase space.

We consider a blockB� in phase space that is the image under a canonical trans-

formation � of a block B of sizeM = � y � � � centered at (y0; � 0). Let i denote the

natural change of scalei : (y; �) ! ((y � y0)=�y; (� � � 0)=� �) that carries B to the

unit cube. � is said to satisfy \natural estimates" if i � i � 1 2 C1 , with derivatives

of all orders bounded independent ofM . Furthermore, we say that a symbolA(x; �)

belongs toSm if

j@�
x @�

� Aj � C�� (1 + j� j)m�j � j; �; � � 0; (3.8)

where the constantsC�� are independent ofx and � .

Theorem 3.1 (Egorov) Let � be a canonical transformation satisfying natural

estimates and carryingB into its double B� . Let A(x; �) 2 Sm be a symbol supported

in �(B) and de�ne ~A(y; �) = A � �(y; �). Then the operatorsA(x; D) and ~A(y; D)

are related by
~A(y; D) = UA(x; D)U� 1 + lower-order terms (3.9)

for a suitable unitary transformation U.

3.3. SYMBOLIC CALCULUS 57

For \most" � (see [10], [9]), the operator U is given explicitly as a Fourier integral

operator

Uf (y) =
Z

e(y; �)eiS (y;�) f̂ (�) d�; e 2 S0; S 2 S1; (3.10)

where the functionS is related to � by

f (y; �; x; �)j�(y; �) = (x; �)g =
�

(y; �; x; �)

�
�
�
�� k =

@S(y; �)
@yk

; xk =
@S(y; �)

@�k

�
: (3.11)

The function S(y; �) is called a generating function for the transformation �. In

the case of a canonical transformation induced by a change ofvariable y = � (x),

S(y; �) = � � � � 1(y) and the factor e(y; �) = j detD� � 1j � 1=2 is added to makeU

unitary, and therefore Uf (y) = j det D� � 1(y)j � 1=2(f � � � 1)(y).

It should be noted that while Egorov's theorem applies to operators supported

in a curved box in phase space, it applies to general di�erential operators when the

canonical transformation � arises from a change of variabley = � (x), provided that

� satis�es the natural estimates required by the theorem.

Our goal is to construct unitary similarity transformations that will have the e�ect

of smoothing the coe�cients of a variable-coe�cient operator A(x; D). In the spirit

of Egorov's theorem, we will construct such transformations by acting on the symbol

A(x; �).

3.3 Symbolic Calculus

We will frequently rely on the rules of symbolic calculusto work with pseudodif-

ferential operators (see [29], [31]), or d 0, more easily and thus perform similarity

transformations of such operators with much less computational e�ort than would

be required if we were to apply transformations that acted onmatrices representing

discretizations of these operators.

58 CHAPTER 3. PRECONDITIONING

3.3.1 Basic Rules of Symbolic Calculus

We will be constructing and applying unitary similarity transformations of the form

~L(x; D) = U� L(x; D)U (3.12)

whereU is a Fourier integral operator, and, in some cases, a d 0. In such cases, it is

necessary to be able to compute the adjoint of a d 0, as well as the product of d 0.

To that end, given a di�erential operator A(x; D), the symbol of the adjoint

A � (x; D) is given by

A � (x; �) =
X

�

1
� !

@�

@x�
@�

@��
A(x; �); (3.13)

while the symbol of the product of two di�erential operatorsA(x; D)B(x; D), denoted

by AB (x; �), is given by

AB (x; �) =
X

�

1
� !

@� A
@��

@� B
@� x

: (3.14)

These rules are direct consequences of the product rule for di�erentiation.

Some useful facts about di�erential operators are easily veri�ed using the above

rules:

1. Operators of even order are symmetric modulo lower-orderterms.

2. Operators of odd order are skew-symmetric modulo lower-order terms.

3. All operators are normal modulo lower-order terms.

4. All operators commute modulo lower-order terms; speci�cally, if A is of order

m and B is of ordern, then AB � BA is of orderm + n � 1.

5. The symbol of the product of two constant-coe�cient di�erential operators is

the product of the symbols.

6. The symbol of the adjoint of a constant-coe�cient di�erential operator is the

complex conjugate of the symbol.

3.3. SYMBOLIC CALCULUS 59

We will see that by using integration by parts, we can generalize the abovemen-

tioned rules to certain symbols of negative order.

3.3.2 The Pseudo-Inverse of the Di�erentiation Operator

For general d 0, the rules (3.13), (3.14) do not always apply, but they do yield an

approximation. However, it will be necessary for us to work with d 0 of negative

order, so we must identify a class of negative-order d 0 for which these rules do

apply.

Let A be an m � n matrix of rank r , and let A = U� V T be the singular value

decomposition ofA, whereUT U = I m , V T V = I n , and � = diag(� 1; : : : ; � r ; 0; : : : ; 0).

Then, the pseudo-inverse(see [21]) ofA is de�ned as

A+ = V� + UT ; (3.15)

where then � m diagonal matrix � + is given by

� + =

2

6
6
6
6
6
6
6
6
6
6
4

� � 1
1

. . .

� � 1
r

0
.. .

0

3

7
7
7
7
7
7
7
7
7
7
5

: (3.16)

We can generalize this concept to de�ne the pseudo-inverse of the di�erentiation

operator D on the space of 2� -periodic functions by

D + u(x) =
1

p
2�

1X

! = �1

ei!x (i!)+ û(!); z+ =

(
z� 1 z 6= 0

0 z = 0
: (3.17)

The rules (3.13) and (3.14) can be used for pseudodi�erential operators de�ned using

D + .

60 CHAPTER 3. PRECONDITIONING

Proposition 3.1 The rules (3.13) and (3.14) hold for pseudodi�erential operators of

the form

A(x; D) =
1X

� =0

a� (x)(D +)� ; (3.18)

at all points (x; �) in phase space provided that� 6= 0.

Proof We will �rst prove that (3.14) holds, and then use this result to prove that

(3.13) holds as well. To verify (3.14), it is su�cient to showthat it holds for the case

A(x; D) = (D +) j ; B(x; D) = b(x); (3.19)

because

� pre-multiplying an operator L(x; D) by a coe�cient pre-multiplies the symbol

L(x; �) by the same coe�cient, and

� post-multiplying an operator L(x; D) by D, if all coe�cients are of nonnegative

order, or byD + , if all coe�cients are of nonpositive order, multiplies thesymbol

L(x; �) by i� in the �rst case and (i�)+ in the second.

We now prove that (3.14) holds for the case (3.19) by induction. Setting j = 1 in

(3.19), we use integration by parts to obtain

A(x; D)B(x; D) = D + b(x)

=
1X

� =0

(� 1)� d� b
dx�

[D +]� +1

=
1X

� =0

1
� !

(� 1)� � ![D +]� +1 d� b
dx�

=
1X

� =0

1
� !

@� A
@��

@� B
@x�

;

so (3.14) holds forj = 1. We now assume that it holds forj = 1; : : : ; k and prove

that it holds for j = k + 1. We let

A(x; D) = R(x; D)S(x; D); R(x; D) = D + ; S(x; D) = (D +)k : (3.20)

3.3. SYMBOLIC CALCULUS 61

By the induction hypothesis,

SB(x; �) =
1X

� =0

1
� !

@� S
@��

@� B
@x�

=
1X

� =0

1
� !

d� b
dx�

@� S
@��

: (3.21)

Using the result
jX

� =0

1
� !

�Y

� =0

(k + �) =
1
j !

jY

� =0

(k + 1 + �); (3.22)

we obtain

AB (x; �) = RSB(x; �)

=
1X

� =0

1
� !

D +

�
d� b
dx�

@� S
@��

�

=
1X

� =0

1
� !

1X

� =0

(� 1)�

�
d� + � b
dx� + �

@� S
@��

[(i�)+]� +1

�

=
1X

� =0

1X

� =0

1
� !

(� 1)� + �

"
d� + � b
dx� + �

�Y

j =0

(k + �)[(i�)+]k+ � + � +1

#

=
1X

� =0

1
� !

(� 1)�

"
�Y

j =0

(k + 1 + �)[(i�)+]k+1+ �

#
d� b
dx�

=
1X

� =0

1
� !

@� RS
@��

@� B
@x�

;

and the induction step is complete.

To show that (3.13) holds, it is su�cient to note that [(D +)k]� = (� 1)k(D +)k ,

and use induction to prove that (3.13) applies to operators of the form Ak(x; D) =

a(x)[D +]k . The base case ofk = 1 follows directly from repeated integration by parts.

For k > 1, we have, using (3.22),

A �
k(x; �) = R� A �

k� 1(x; �)

62 CHAPTER 3. PRECONDITIONING

=
1X

� =0

1
� !

@� R
@��

@�

@x�

"
1X

� =0

1
� !

@�

@��
@� Ak� 1

@x�

#

=
1X

� =0

1X

� =0

1
� !

1
� !

@� R
@��

�
@�

@��
@� + � Ak� 1

@x� + �

�

=
1X

� =0

1
� !

@�

@��
@� A
@x�

;

and the proof is complete.2

This result allows us to e�ciently construct and apply unitary similarity transforma-

tions based on d 0 of the form

U(x; D) =
1X

� =0

a� (x)[D +]� � : (3.23)

Such transformations will be considered in Section 3.5.

3.4 Local Preconditioning

A special case that is useful for practical computation is where � arises from a simple

change of variabley = � (x), where � (x) is a di�erentiable function and

� 0(x) > 0;
1

2�

Z 2�

0
� 0(s) ds = 1: (3.24)

The transformation � has the form

�(y; �) ! (x; �); x = � � 1(y); � = � 0(x)�: (3.25)

In this case, we sete(y; �) = j detD� � 1(y)j1=2 and S(y; �) = � � 1(y)� , and the Fourier

inversion formula yieldsUf (y) = j det D� � 1(y)j1=2f � � � 1(y).

Suppose thatL(x; D) is an m-th order di�erential operator such that the leading

coe�cient am (x) does not change sign. Using this simple canonical transformation, we

can precondition a di�erential operatorL(x; D) as follows: Choose� (x) and construct

3.4. LOCAL PRECONDITIONING 63

a canonical transformation �(y; �) by (3.25) so that the transformed symbol

~L(y; �) = L(x; �) � �(y; �) = L(� � 1(y); � 0(� � 1(y)) �) (3.26)

resembles a constant-coe�cient symbol as closely as possible for a �xed frequency

� 0 in transformed phase space. This will yield a symbol~L(y; �) that is smooth in a

region of phase space concentrated around� = � 0. Then, we can select another value

for � 0 and repeat, until our symbol is su�ciently smooth in the region of phase space

f (y; �)jj � j < N= 2g.

Since we are using a canonical transformation based on a change of spatial variable

y = � (x), we can conclude by Egorov's theorem that there exists a unitary Fourier

integral operator U such that if A = U� 1LU , then the symbol ofA agrees with ~L

modulo lower-order errors. Using the chain rule and symbolic calculus, it is a simple

matter to construct this new operatorA(y; D).

We will now illustrate the process for a second-order self-adjoint operator

L(x; D) = a2(x)D 2 + a0
2(x)D + a0(x); (3.27)

with symbol

L(x; �) = � a2(x)� 2 + a0
2(x)i� + a0(x): (3.28)

We will attempt to smooth out this symbol in a region of phase space concentrated

around the line� = � 0. Our goal is to choose� (x) so that the canonical transformation

(3.25) yields a symbol~L(y; �) satisfying ~L(y; � 0) is independent ofy. In this case, the

expressionL(� � 1(y); � 0(� � 1(y)) � 0) would also be independent ofy, and therefore we

can reduce the problem to that of choosing� so that L(x; � 0(x)� 0) is independent of

x. The result is, for eachx, a polynomial equation in� (x),

� a2(x)� 0(x)2� 2
0 + ia0

2(x)� 0(x)� 0 + a0(x) = L � 0 ; (3.29)

where the constantL � 0 is independent ofx. This equation cannot be solved exactly,

but we can try to solve it approximately in some sense. For example, we can choose

a real constantL � 0 , perhaps as the average value ofL(x; � 0) over the interval [0; 2�],

64 CHAPTER 3. PRECONDITIONING

and then choose� (x) in order to satisfy

� a2(x)� 0(x)2� 2
0 + a0(x) = L � 0 (3.30)

at each gridpoint, which yields

� 0(x) = c� 0

s
Avg a2

a2(x)
+

a0(x) � Avg a0

a2(x)� 2
0

; (3.31)

where the constantc� 0 is added to ensure that Avg� = 1. Figures 3.5 and 3.6

illustrate the e�ect of this technique of local preconditioning on the symbol of the

operator

L(x; D) = D
��

1 +
1
2

sinx
�

D
�

�
�

1 �
1
2

cos 2x
�

; (3.32)

�rst on regions of phase space corresponding to lower frequencies, and then regions

corresponding to higher frequencies. We make the followingobservations:

� It is not necessary to apply local preconditioning to every frequency, because

transformations applied to lower frequencies have far-reaching e�ects on the

symbol, thus requiring less work to be done at higher frequencies. These far-

reaching e�ects are due to the smoothing of the leading coe�cient.

� As � 0 ! 1 , the transformation �(y; �) converges to the unique canonical trans-

formation of the form (3.25) that makes the leading coe�cient of L(x; D) con-

stant, and convergence is linear in� � 1
0 . A variation of this transformation is

used by Guidotti and Solna in [26] to obtain approximate high-frequency eigen-

functions of a second-order operator.

3.5 Global Preconditioning

It is natural to ask whether it is possible to construct a unitary transformation U

that smooths L(x; D) globally, i.e. yield the decomposition

U� L(x; D)U = ~L(�): (3.33)

3.5. GLOBAL PRECONDITIONING 65

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Symbol of locally preconditioned operator L(y,h) (h
0
=4)

|L
(y

,h
)|

y

Figure 3.5: Local preconditioning applied to operatorL(x; D) with � 0 = 4 to obtain
new operatorL(y; D).

66 CHAPTER 3. PRECONDITIONING

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Symbol of locally preconditioned operator L(y,h) (h
0
=16)

|L
(y

,h
)|

y

Figure 3.6: Local preconditioning applied to operatorL(y; D) from Figure 3.5, with
� 0 = 16.

3.5. GLOBAL PRECONDITIONING 67

In this section, we will attempt to answer this question. We begin by examining

a simple eigenvalue problem, and then attempt to generalizethe solution technique

employed.

Consider a �rst-order di�erential operator of the form

L(x; D) = a1D + a0(x); (3.34)

wherea0(x) is a 2� -periodic function. We will solve the eigenvalue problem

L(x; D)u(x) = �u (x); 0 < x < 2�; (3.35)

with periodic boundary conditions

u(x) = u(x + 2�); �1 < x < 1 : (3.36)

This eigenvalue problem is a �rst-order linear di�erential equation

a1u0(x) + a0(x)u(x) = �u (x); (3.37)

whose general solution can be obtained by using an integrating factor

' � (x) = exp
� Z x

0

a0(s) � �
a1

ds
�

: (3.38)

Multiplying through (3.37) by ' � (x) and applying the product rule for di�erentiation

yields

u� (x) =
C

' � (x)
; (3.39)

where C is an arbitrary constant. The periodic boundary conditionscan be used

to determine the eigenvalues ofL(x; D). Speci�cally, an eigenfunctionu� (x) must

satisfy u� (0) = u� (2�), which yields the condition

Z 2�

0

� � a0(s)
a1

ds = i2�k; (3.40)

68 CHAPTER 3. PRECONDITIONING

for some integerk. If we denote by Avga0 the average value ofa0(x) on the interval

[0; 2�],

Avg a0 =
1

2�

Z 2�

0
a0(s) ds; (3.41)

then the periodicity of u� (x) yields the discrete spectrum ofL(x; D),

� k = Avg a0 + ia1k; (3.42)

for all integersk, with corresponding eigenfunctions

uk(x) = exp
� Z x

0

Avg a0 � a0(s)
a1

ds+ ikx
�

: (3.43)

Let

v(x) = exp
� Z x

0

Avg a0 � a0(s)
a1

ds
�

: (3.44)

Then uk(x) = v(x)eikx and

[v(x)]� 1L(x; D)v(x)eikx = � keikx : (3.45)

We have succeeded in diagonalizingL(x; D) by using the zeroth-order symbolv(x)

to perform a similarity transformation of L(x; D) into a constant-coe�cient operator

~L(x; D) = [v(x)]� 1L(x; D)v(x) = a1D + Avg a0: (3.46)

The same technique can be used to transform anmth-order di�erential operator of

the form

L(x; D) = am D m +
m� 1X

� =0

a� (x)D � ; (3.47)

so that the constant coe�cient am is unchanged and the coe�cientam� 1(x) is trans-

formed into a constant equal to ~am� 1 = Avg am� 1: This is accomplished by computing
~L(x; D) = [vm (x)]� 1L(x; D)vm (x) where

vm (x) = exp
� Z x

0

Avg am� 1 � am� 1(s)
mam

ds
�

: (3.48)

3.5. GLOBAL PRECONDITIONING 69

Note that if m = 1, then we havev1(x) = v(x), where v(x) is de�ned in (3.44).

We now seek to generalize this technique in order to eliminate lower-order variable

coe�cients. The basic idea is to construct a transformationU� such that

1. U� is unitary,

2. The transformation ~L(x; D) = U�
� L(x; D)U� yields an operator ~L(x; D) =

P m
� = �1 a� (x)

�
@

@x

� �
such that a� (x) is constant, and

3. The coe�cients b� (x) of L(x; D), where� > � , are invariant under the similarity

transformation ~L = U�
� L(x; D)U� .

It turns out that such an operator is not di�cult to construct . First, we note that if

� (x; D) is a skew-symmetric pseudodi�erential operator, thenU(x; D) = exp[� (x; D)]

is a unitary operator, since

U(x; D)� U(x; D) = (exp[� (x; D)]) � exp[� (x; D)] = exp[� � (x; D)] exp[� (x; D)] = I:

(3.49)

We consider an example to illustrate how one can determine a operator � (x; D) so

that U(x; D) = exp[� (x; D)] satis�es the second and third conditions given above.

Given a second-order self-adjoint operator of the form (3.27), we know that we can

use a canonical transformation to make the leading-order coe�cient constant, and

since the corresponding Fourier integral operator is unitary, symmetry is preserved,

and therefore our transformed operator has the form

L(x; D) = a2D 2 + a0(x): (3.50)

In an e�ort to transform L so that the zeroth-order coe�cient is constant, we apply

the similarity transformation ~L = U� LU , which yields an operator of the form

~L = (I � � +
1
2

� 2 � � � �)L(I + � +
1
2

� 2 + � � �)

= (I � � (x; D) +
1
2

� 2(x; D) � � � �)(L + L� +
1
2

L� 2 + � � �)

= L + L� +
1
2

L� 2 �

70 CHAPTER 3. PRECONDITIONING

�L � �L� �
1
2

�L� 2 +

1
2

� 2L +
1
2

� 2L� +
1
4

� 2L� 2 + � � �

= L + (L� � �L) +
1
2

[(L� � �L)� � � (L� � �L)] +

1
2

[� (�L�) � (�L�)�] +
1
4

� 2L� 2 + � � � :

Since we want the �rst and second-order coe�cients ofL to remain unchanged, the

perturbation E of L in ~L = L + E must not have order greater than zero. If we

require that � has negative order� k, then the highest-order term inE is L� � �L ,

which has order 1� k, so in order to a�ect the zero-order coe�cient of L we must

have� be of order� 1. By symbolic calculus, it is easy to determine that the highest-

order coe�cient of L� � �L is 2a2b0
� 1(x) where b� 1(x) is the leading coe�cient of � .

Therefore, in order to satisfy

a0(x) + 2 a2b0
� 1(x) = constant ; (3.51)

we must haveb0
� 1(x) = � (a0(x) � Avg a0)=2a2. In other words,

b� 1(x) = �
1

2a2
D + (a0(x)) ; (3.52)

whereD + is the pseudo-inverse of the di�erentiation operatorD introduced in Section

3.3. Therefore, for our operator� (x; D), we can use

� (x; D) =
1
2

[b� 1(x)D + � (b� 1(x)D +)�] = b� 1(x)D + + lower-order terms: (3.53)

Using symbolic calculus, it can be shown that the coe�cient of order � 1 in ~L is zero.

We can use similar transformations to make lower-order coe�cients constant as well.

In doing so, the following result is helpful:

3.5. GLOBAL PRECONDITIONING 71

Proposition 3.2 Let L(x; D) be an m-th order self-adjoint pseudodi�erential oper-

ator of the form

L(x; D) =
mX

� =0

a� (x)D � +
1X

� =0

a� (x)[D +]� : (3.54)

where the coe�cients f a� (x)g are all real. For any odd integer� 0, if a� (x) is constant

for all � > � 0, then a� 0 (x) � 0.

Proof SinceL(x; D) is self-adjoint, we have, by (3.13),

L(x; �) =
1X

� =0

1
� !

@�

@��
@� L
@x�

: (3.55)

Because� 0 is odd, this implies that a� 0 (x) = � ca� 0 (x) for some constantc > 0, from

which the result follows immediately.2

Example Let L(x; D) = D 2 + sin x. Let

b� 1(x) =
1
2

cosx (3.56)

and

� (x; D) =
1
4

[cosxD + � (cosxD +)�] =
1
2

cosx(x)D + + lower-order terms: (3.57)

Then, since Avg sinx = 0, it follows that

~L(x; D) = U�
� L(x; D)U�

= exp[� � (x; D)]L(x; D) exp[� (x; D)]

= D 2 + E(x; D);

whereE(x; D) is of order � 2. 2

72 CHAPTER 3. PRECONDITIONING

3.5.1 Non-Normal Operators

If the operator L(x; D) is not normal, then it is not unitarily diagonalizable, and

therefore cannot be approximately diagonalized using unitary transformations. In-

stead, we can use similarity transformations of the form

~L(x; D) = exp[� � (x; D)]L(x; D) exp[� (x; D)]; (3.58)

where � (x) is obtained in the same way as for self-adjoint operators, except that we

do not take its skew-symmetric part. For example, ifL(x; D) = a2D 2 + a1D + a0(x),

then we can make the zeroth-order coe�cient of~L(x; D) constant by setting

� (x) = b� 1(x)D + = �
1

2a2
D + (a0(x))D + : (3.59)

3.6 Summary

We have succeeded in constructing unitary similarity transformations that smooth the

coe�cients of a self-adjoint di�erential operator locally in phase space so that the sym-

bol of the transformed operator more closely resembles thatof a constant-coe�cient

operator. In addition, we have shown how unitary similaritytransformations can be

used to eliminate variable coe�cients of arbitrary order, at the expense of introduc-

ing lower-order variable coe�cients. In Chapter 5 we will see that these techniques

for smoothing coe�cients will improve the accuracy of the Krylov subspace methods

developed in Chapter 2. Furthermore, it will be seen that these transformations can

yield good approximations of eigenvalues and eigenfunctions of self-adjoint di�erential

operators.

Chapter 4

Implementation

In this chapter we will show how the algorithm developed during the previous two

chapters can be implemented e�ciently.

4.1 Symbolic Lanczos Iteration

Consider the basic process developed in Chapter 2 for computing the Fourier coe�-

cients of ~un+1 from ~un :

for ! = � N=2 + 1; : : : ; N=2 � 1

Choose a scaling constant� !

u1 = êH
! S(� t)ê!

using the symmetric Lanczos algorithm

u2 = êH
! S(� t)(ê! + � ! un)

using the unsymmetric Lanczos algorithm

[ûn+1]! = (� !)� 1(u2 � u1)

end

Clearly, this algorithm is much too slow to be used as a time-stepping scheme, because

at least O(N 2 logN) operations are required to carry out the symmetric Lanczos

iteration 2N � 2 times. Fortunately, we can take advantage of the symbolic calculus

discussed in the previous chapter to overcome this problem.

73

74 CHAPTER 4. IMPLEMENTATION

Let T(!) be the Jacobi matrix created by the symmetric Lanczos iteration with

starting vector ê! . The basic idea is to use symbolic calculus to create a representation

of the nonzero elements ofT(!) as a function of! . Consider the symmetric Lanczos

iteration applied to a general matrixA with starting vector r 0:

Chooser 0

� 0 = 1

x0 = 0

for j = 1; : : : ; k

x j = r j � 1=� j � 1

� j = xH
j Ax j

r j = (A � � j I)x j � � j � 1x j � 1

� 2
j = r H

j r j

end

It would be desirable to re-use as much computational e�ort as possible in applying

this algorithm for each frequency! . To that end, we will now carry out this iteration

for a given operatorL(x; D) and variable frequency! and compute elements ofT(!),

represented as functions of! , in order to determine how much re-use is possible.

4.1.1 A Simple Example

Consider a second-order self-adjoint di�erential operator of the form

L(x; D) = a2D 2 + a0(x); (4.1)

with symbol

L(x; �) = � a2� 2 + a0(x): (4.2)

We will now apply the symmetric Lanczos iteration to this operator with starting

function ê! (x), where ê! (x) was de�ned in (1.13), and examine how� 1, � 1 and � 2

4.1. SYMBOLIC LANCZOS ITERATION 75

can be computed as e�ciently as possible. We have

� 1 = ĥe! ; L(x; D)ê! i h

= � a2! 2 + Avg a0:

Proceeding to� 1, we have

� 2
1 = k(L(x; D) � � 1I)ê! k2

= ka0(x)k2 � j Avg a0j2:

Finally, for � 2 we let b(x) = (a0(x) � Avg a0)=� 1 and obtain

� 2 = hb̂e! ; L(x; D)b̂e! i h

=
�

b̂e! ; a2
d2(b̂e!)

dx2

�

h

+ hb̂e! ; a0b̂e! i h

= a2

��
b̂e! ;

d2(b̂e!)
dx2

�

h

�
+ hb; a0bi h

= a2

��
b̂e! ;

d2b
dx2

ê!

�

h

+ 2
�

b̂e! ; (i!)
db
dx

ê!

�

h

+

b̂e! ; (i!)2b̂e!

�
h

�
+ hb; a0bi h

= a2

��
b;

d2b
dx2

�

h

+ 2
�

b;(i!)
db
dx

�

h

+

b;(i!)2b

�
h

�
+ hb; a0bi h

= a2

�
�

�
db
dx

;
db
dx

�

h

+ 2i!
�

b;
db
dx

�

h

� ! 2

�
+ hb; a0bi h

= � a2! 2 � k b0k2
h + hb; a0bi h

We see that, so far, the entries of the tridiagonal matrix constructed by the Lanczos

iteration are polynomials in! . While this does not hold in general, the entries can still

be represented as functions of! . Therefore, we can construct theK -point Gaussian

quadrature rules for all frequencies! = � N=2 + 1; : : : ; N=2 � 1 by �rst constructing

representations for the elements� j , j = 1; : : : ; K , and � j , j = 1; : : : ; K � 1, as

functions of ! , and then evaluating these representations for each! . By computing

a representation of� K as well, we can obtainK -point Gauss-Radau rules.

76 CHAPTER 4. IMPLEMENTATION

4.2 An Abstract Data Type for Lanczos Vectors

We now describe an abstract data type (ADT) that can be used toe�ciently compute

and represent Lanczos vectors corresponding to allN � 1 Fourier components simul-

taneously, as well as the elements of the corresponding Jacobi matrices, as functions

of the frequency! .

4.2.1 Data Structure

The data contained in this type is a representation of a function of the form

f (x; !) =
mX

j =1

cj (!)f j (x) +
nX

k=1

dk(!)gk(x)ei!x : (4.3)

Speci�cally, a function f (x; !) is de�ned by four ordered collections:

f F = f f 1
F (x); : : : ; f m

F (x)g; (4.4)

f C = f f 1
C (!); : : : ; f m

C (!)g; (4.5)

f F̂ = f f 1
F̂ (x); : : : ; f k

F̂ (x)g; (4.6)

f Ĉ = f f 1
Ĉ (!); : : : ; f k

F̂ (!)g: (4.7)

We denote the sizes of these collections byjf F j, jf C j, jf F̂ j, and jf Ĉ j, respectively. For

each such collection, we use a superscript to denote a singleelement. For example,

f 2
F corresponds tof 2(x) in (4.3).

Given an N -point grid of the form (2.42), with uniform spacing h = 2�=N , a

function f (x; !) can be represented using matricesFF , FC , FF̂ , FĈ , de�ned as follows:

FF =
h

f 1
F � � � f m

F

i
; m = jf F j; [f j

F]k = f j
F (kh); (4.8)

FC =
h

f 1
C � � � f m

C

i
; m = jf C j; [f j

C]k = f j
C (k � N=2); (4.9)

FF̂ =
h

f 1
F̂

� � � f k
F̂

i
; k = jf F̂ j; [f j

F̂
]k = F j

F̂
(kh); (4.10)

FĈ =
h

f 1
Ĉ

� � � f k
Ĉ

i
; k = jf Ĉ j; [f j

Ĉ
]k = F j

Ĉ
(k � N=2): (4.11)

4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS 77

4.2.2 Operations

This ADT supports the following operations:

� Addition and subtraction: The sum of two functions f (x; !) and g(x; !) is

represented by the function

h(x; !) = f (x; !) � g(x; !); (4.12)

which has valuesh(x; !) = f (x; !) + g(x; !). The � operation can be imple-

mented as follows:

n = jf F j

HF = FF

HC = FC

` = 1

for j = 1; : : : ; jgF j

found = 0

for k = 1; : : : ; jf F j

if khk
F � gj

F k < tol

hk
C = hk

C + gj
C

found = 1

break

end

end

if found = 0

hn+ `
F = gj

F

hn+ `
C = gj

C

` = ` + 1

end

end

n = jf F̂ j

78 CHAPTER 4. IMPLEMENTATION

H F̂ = FF̂

H Ĉ = FĈ

for j = 1; : : : ; jgF̂ j

found = 0

for k = 1; : : : ; jf F̂ j

if khk
F̂

� gj
F̂

k < tol

hk
Ĉ

= hk
Ĉ

+ gj
Ĉ

found = 1

break

end

end

if found = 0

hn+ `
F̂

= gj
F̂

hn+ `
Ĉ

= gj
Ĉ

` = ` + 1

end

end

Similarly, the di�erence of two functions f (x; !) and g(x; !) is represented by

the function

h(x; !) = f (x; !) 	 g(x; !) (4.13)

which has valuesh(x; !) = f (x; !) � g(x; !). The implementation of 	 sim-

ply negates the coe�cients ofg(x; !) and then performs the same underlying

operations as� :

n = jf F j

HF = FF

HC = FC

` = 1

for j = 1; : : : ; jgF j

4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS 79

found = 0

for k = 1; : : : ; jf F j

if khk
F � gj

F k < tol

hk
C = hk

C � gj
C

found = 1

break

end

end

if found = 0

hn+ `
F = gj

F

hn+ `
C = � gj

C

` = ` + 1

end

end

n = jf F̂ j

H F̂ = FF̂

H Ĉ = FĈ

for j = 1; : : : ; jgF̂ j

found = 0

for k = 1; : : : ; jf F̂ j

if khk
F̂

� gj
F̂

k < tol

hk
Ĉ

= hk
Ĉ

� gj
Ĉ

found = 1

break

end

end

if found = 0

hn+ `
F̂

= gj
F̂

hn+ `
Ĉ

= � gj
Ĉ

` = ` + 1

end

80 CHAPTER 4. IMPLEMENTATION

end

In the worst case, wheref f F g = f gF g and f f F̂ g = f gF̂ g, (jf F j + jgF j)N oating-

point operations are required for both� and 	 . In any case, (jf F j + jgF j + jf F̂ j +

jgF̂ j)N data movements and/or oating-point operations are needed.

While it is not absolutely necessary to check whether the function collections

for f and g have any elements in common, it is highly recommended, since

applying di�erential operators to these representations can cause the sizes of

these collections to grow rapidly, and therefore it is wise to take steps to o�set

this growth wherever possible.

� Scalar multiplication: Given a function f (x; !) and an expressions(!), the

operation g(x; !) = s(!)
 f (x; !) scales each of the coe�cients off (x; !)

by s(!), yielding the result g(x; !) which is a function with values g(x; !) =

s(!)f (x; !). The
 operation can be implemented as follows:

GF = FF

for j = 1; : : : ; jf C j

gj
C = sf j

C

end

GF̂ = FF̂

for j = 1; : : : ; jf Ĉ j

gj
Ĉ

= sf j
Ĉ

end

This implementation requires (jf C j + jf Ĉ j)N oating-point operations.

� Application of di�erential operator: The operation g(x; !) = L(x; D) ^ f (x; !)

computes a representationg(x; !) of the result of applying themth-order di�er-

ential operator L(x; D) to f (x; !) satisfying g(x; !) = L(x; D)f (x; !) for each

! . The following implementation makes use of the rule (3.14).In describing

4.2. AN ABSTRACT DATA TYPE FOR LANCZOS VECTORS 81

the implementation, we do not assume a particular discretization of L(x; D) or

the functions in the collectionsf F or f F̂ ; this issue will be discussed later in this

section.

gC = f C

for j = 1; : : : ; jf F j

gj
F (x) = L(x; D)f j

F (x)

end

` = 1

for j = 1; : : : ; jf F̂ j

for k = 0; : : : ; m

g`
F̂

= @k L
@�k (x; D)f j

F̂

g`
Ĉ

= (i!)k

k! f j
Ĉ

` = ` + 1

end

end

This implementation requiresNm(1+ jf F̂ j)+ jf F̂ j(Dm(m+1) =2+ M (m+1)(m+

2)=2) + jf F j(Dm + M (m + 1)) oating-point operations, where D is the number

of operations required for di�erentiation and M is the number of operations

required for pointwise multiplication of two functions. Onan N -point uniform

grid, M = N and D = 2N logN + N , provided that N is also a power of 2.

� Inner product: The operationh(!) = f (x; !) � g(x; !) computes a representa-

tion of the inner product of f (x; !) and g(x; !), resulting in an expressionh(!)

with values hf (�; !); g(�; !)i . The following algorithm can be used to implement

� . As usual,T represents the discrete Fourier transform operator.

h = 0

for j = 1; : : : ; jf C j

for k = 1; : : : ; jgC j

82 CHAPTER 4. IMPLEMENTATION

h = h + (f j
Cgk

C) � ([f j
F]H gk

F)

end

for k = 1; : : : ; jgĈ j

v̂ = T[f j
F gk

F̂
]

h = h + (f j
Cgk

Ĉ
)v̂

p
2�=h

end

end

for j = 1; : : : ; jf Ĉ j

for k = 1; : : : ; jgC j

v̂ = T[f j
F̂

gk
F]

h = h + (f j
Ĉ

gk
C)v̂

p
2�=h

end

for k = 1; : : : ; jgĈ j

h = h + (f j
Ĉ

gk
Ĉ

) � ([f j
F̂

]H gk
F̂

)

end

end

The above implementation requires 3N (jf C jjgC j + jf Ĉ jjgĈ j) + (N logN + 4N +

1)(jf C jjgĈ j + jf Ĉ jjgC j) oating-point operations.

This set of operations is su�cient to carry out the Lanczos iteration symbolically

given two functions as initial Lanczos vectors. The result of the iteration is the set of

all Jacobi matrices for all wave numbers! = � N=2 + 1; : : : ; N=2 � 1.

4.3 Construction of Approximate Solutions

In this section we will present a full implementation of Algorithms 2.2 and 2.3 and

analyze the time and space complexity required. To simplifythe discussion, we will

make the following assumptions:

1. L(x; D) is a second-order self-adjoint operator of the form

L(x; D) = a2D 2 + a0(x): (4.14)

4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 83

2. K , the number of Gaussian quadrature nodes, is equal to 2, which is generally

su�cient.

3. L(x; D) and the initial data f (x) are discretized on anN -point uniform grid of

the form (2.42).

4.3.1 Computation of Jacobi Matrices

For each frequency! , Algorithm 2.2 computes two 2� 2 Jacobi matrices in order

to approximate the quantities D ! = eH
! SN (� t)e! and F n

! = eH
! SN (� t)(e! + � un):

Clearly, D ! need only be computed once, whileF n
! must be recomputed at each time

step. The computation of the Jacobi matrixJ! used to obtainD ! proceeds as follows:

[r0]Ĉ = 1

[r0]F̂ = 1

� 2
0 = r0 � r0

x1 = r0 � � 0

L1 = L ^ x1

� 1 = x1 � L1

r1 = L1 	 (� 1
 x1)

� 2
1 = r � r

x2 = r1 � � 1

L2 = L ^ x2

� 2 = x2 � L2

In an e�cient implementation that recognizes that the initi al function x has a constant

coe�cient, a total of 38 N + 6N logN � 6 oating-point operations are required.

E�ciency can be improved by applying standard optimization techniques such as

common subexpression elimination (see [1] for details). For example, on an operator

of the form (4.14), the entries ofJ! , in the case ofK = 2, can be computed in only

13N + N logN � 1 oating-point operations using the representations of� 1, � 1 and

� 2 derived in Section 4.1.1.

84 CHAPTER 4. IMPLEMENTATION

4.3.2 Updating of Jacobi Matrices

The operations described in the previous section can be usedto carry out the sym-

metric Lanczos iteration with starting vectorê! simultaneously for all! , ! = � N=2+

1; : : : ; N=2 � 1. While they can also be used for the unsymmetric Lanczos iteration

with starting vectors ê! and ê! + � w f , where f is a given vector and� ! a constant

depending on! , there is a more e�cient alternative, which we describe in this section.

Let A be a symmetric positive de�nite n � n matrix and let r 0 be an n-vector.

Suppose that we have already carried out the symmetric Lanczos iteration given in

Section 4.1,

x0 = 0

� 0 = kr 0k2

for j = 1; : : : ; k

x j = r j � 1=� j � 1

� j = xH
j Ax j

r j = (A � � j I)x j � � j � 1x j � 1

� 2
j = kr j k2

2

end

to obtain orthogonal vectorsr 0; : : : ; r k and the Jacobi matrix

Jk =

2

6
6
6
6
6
6
6
4

� 1 � 1

� 1 � 2 � 2

.

� k� 2 � k� 1 � k� 1

� k� 1 � k

3

7
7
7
7
7
7
7
5

; (4.15)

along with the value � k .

4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 85

Now, we wish to compute the entries of the modi�ed Jacobi matrix

Ĵk =

2

6
6
6
6
6
6
6
4

�̂ 1 �̂ 1

�̂ 1 �̂ 2 �̂ 2

.

�̂ k� 2 �̂ k� 1 �̂ k� 1

�̂ k� 1 �̂ k

3

7
7
7
7
7
7
7
5

; (4.16)

along with the value�̂ k , that result from applying the unsymmetric Lanczos iteration

with the same matrix A and the initial vectors r 0 and r 0 + f , where f is a given

perturbation. The following iteration produces these values.

Algorithm 4.1 Given the Jacobi matrix (4.15), the �rst k +1 unnormalized Lanczos

vectors r 0; : : : ; r k , the value � k = kr kk2, and a vector f , the following algorithm

generates the modi�ed Jacobi matrix (4.16) that is producedby the unsymmetric

Lanczos iteration with left initial vector r 0 and right initial vector r 0 + f , along with

the value �̂ k .

� 0 = �̂ 0 = 0

� � 1 = 0

q� 1 = 0

q0 = f

�̂ 2
0 = � 2

0 + r H
0 q0

s0 = � 0

�̂ 2
0

t0 = � 2
0

�̂ 2
0

d0 = 0

for j = 1; : : : ; k

�̂ j = � j + sj � 1r H
j qj � 1 + dj � 1� j � 2t

� 1=2
j � 1

dj = (dj � 1� j � 2 + (� j � �̂ j)t
1=2
j � 1)=�̂ j � 1

qj = (A � �̂ j I)qj � 1 � �̂ 2
j � 1qj � 2

�̂ 2
j = t j � 1� 2

j + sj � 1r H
j qj

sj = � j

�̂ 2
j
sj � 1

86 CHAPTER 4. IMPLEMENTATION

t j =
� 2

j

�̂ 2
j
t j � 1

end

We now prove the correctness of this algorithm.

Theorem 4.1 Let A be an n � n symmetric positive de�nite matrix and r0 be an

n-vector. Let JK be the Jacobi matrix obtained by applying the symmetric Lanczos

iteration to A with initial vector r0, i.e.

ARK = RK JK + � K r K ; (4.17)

where RK =
h

r 0 � � � r K � 1

i
. Then Algorithm 4.1 computes the entries of the

modi�ed Jacobi matrix ĴK obtained by applying the unsymmetric Lanczos iteration

to A with left initial vector r 0 and right initial vector r 0 + f , along with the value

�̂ K = [ĴK +1]K;K +1 .

Proof It is su�cient to verify the correctness of the recurrence relations

�̂ 2
j = t j � 1� 2

j + sj � 1r H
j qj ; j � 0; s� 1 = 0; (4.18)

and

�̂ j = � j + sj � 1r H
j qj � 1 + dj � 1� j � 2t

� 1=2
j � 1 ; j � 1; � 0 = �̂ 0 = 0; (4.19)

wheredj is as de�ned in Algorithm 4.1. Consider the unsymmetric Lanczos iteration

x̂0 = 0

ŷ0 = 0
^� 0

2
= p̂0r̂ 0

for j = 1; : : : ; k

x̂ j = r̂ j � 1=�̂ j � 1

ŷ j = p̂ j � 1=�̂ j � 1

�̂ j = ŷH
j Ax̂ j

4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 87

r̂ j = (A � �̂ j I)x̂ j � �̂ j � 1x̂ j � 1

p̂ j = (A � �̂ j I)ŷ j � �̂ j � 1ŷ j � 1

�̂ 2
j = p̂H

j r̂ j

end

where r̂ 0 = r 0 + f and p̂0 = r 0. Clearly,

�̂ 2
0 = r H

0 r 0 + r H
0 f = � 2

0 + r H
0 f = � 2

0 + r H
0 q0: (4.20)

Let j � 1. To verify the recurrence relations for ^� j and �̂ 2
j , we must use the relations

p̂ j = (A � �̂ j I)ŷ j � �̂ j � 1ŷ j � 1

=
1

�̂ j � 1

(A � �̂ j I)p̂ j � 1 + � � �

=
1

�̂ j � 1

A(cj � 1r j � 1 + dj � 1r j � 2) �
1

�̂ j � 1

�̂ j cj � 1r j � 1 + � � �

= cj � 1
� j � 1

�̂ j � 1

(r j + � j x j) + dj � 1
� j � 2

�̂ j � 1

r j � 1 � �̂ j
cj � 1

�̂ j � 1

r j � 1 + � � �

= cj � 1
� j � 1

�̂ j � 1

r j +

"

(� j � �̂ j)
cj � 1

�̂ j � 1

+ dj � 1
� j � 2

�̂ j � 1

#

r j � 1 + � � �

= cj r j + dj r j � 1 + � � � ;

and

r̂ j = (A � �̂ j I)x̂ j � �̂ j � 1x̂ j � 1

=
1

�̂ j � 1

(A � �̂ j I)r̂ j � 1 �
�̂ j � 1

�̂ j � 2

f j � 2qj � 2 + � � �

=
1

�̂ j � 1

A(cj � 1r j � 1 + dj � 1r j � 2 + f j � 1qj � 1) �
1

�̂ j � 1

�̂ j (cj � 1r j � 1 + f j � 1qj � 1) �

�̂ j � 1

�̂ j � 2

f j � 2qj � 2 + � � �

= cj � 1
� j � 1

�̂ j � 1

r j + � j
cj � 1

�̂ j � 1

r j � 1 + dj � 1
� j � 2

�̂ j � 1

r j � 1 � �̂ j
cj � 1

�̂ j � 1

r j � 1 +

88 CHAPTER 4. IMPLEMENTATION

f j � 1

�̂ j � 1

"

(A � �̂ j I)qj � 1 �
f j � 2

f j � 1

�̂ 2
j � 1

�̂ j � 2

qj � 2

#

= cj r j +

"

(� j � �̂ j)
cj � 1

�̂ j � 1

+ dj � 1
� j � 2

�̂ j � 1

#

r j � 1 + f j qj + � � �

= cj r j + dj r j � 1 + f j qj + � � � ;

whered0 = 0 and c0 = 1. It follows that

�̂ 2
j = p̂H

j r̂ j

= cj r H
j [cj r j + f j qj]

= c2
j �

2
j + cj f j r H

j qj

= t j � 1� 2
j + sj � 1r H

j qj :

and

�̂ j = ŷH
j Ax̂ j

=
1

�̂ 2
j � 1

p̂H
j � 1Ar̂ j � 1

=
1

�̂ 2
j � 1

[cj � 1r j � 1 + dj � 1r j � 2]
H Ar̂ j � 1

=
1

�̂ 2
j � 1

n
cj � 1 [� j � 1r j + � j r j � 1]

H r̂ j � 1 + dj � 1� j � 2r H
j � 1r̂ j � 1

o

=
1

�̂ 2
j � 1

cj � 1

�
� j � 1f j � 1r H

j qj � 1 + � j (cj � 1� 2
j � 1 + f j � 1r H

j � 1qj � 1)
�

+

� j � 2

�̂ 2
j � 1

dj � 1r H
j � 1r̂ j � 1

=

t j � 1 +
1

�̂ 2
j � 1

sj � 2r H
j � 1qj � 1

!

� j + sj � 1r H
j qj � 1 +

� j � 2

�̂ 2
j � 1

dj � 1r H
j � 1r̂ j � 1

=
1

�̂ 2
j � 1

�
t j � 2� 2

j + sj � 2r H
j � 1qj � 1

�
� j + sj � 1r H

j qj � 1 +
� j � 2

�̂ 2
j � 1

dj � 1r H
j � 1r̂ j � 1

= � j + sj � 1r H
j qj � 1 +

� j � 2

�̂ 2
j � 1

dj � 1r H
j � 1r̂ j � 1

4.3. CONSTRUCTION OF APPROXIMATE SOLUTIONS 89

= � j + sj � 1r H
j qj � 1 +

� j � 2dj � 1

cj � 1
:

2

It should be noted that this iteration produces the updated Jacobi matrix with less

information than is required by the modi�ed Chebyshev algorithm described in [12],

[38], which employsmodi�ed moments. The modi�ed Chebyshev algorithm is designed

for an arbitrary modi�cation of the measure � (�) of the underlying integral (2.10).

By exploiting our knowledge of the speci�c modi�cation of � (�), we are able to

develop a more e�cient algorithm. The basic idea is similar to that of an algorithm

described by Golub and Gutknecht in [17] that also overcomesthe need for extra

information required by the modi�ed Chebyshev algorithm. The main di�erence

between Algorithm 4.1 and the algorithm from [17] is that Algorithm 4.1 computes

the elements ofĴK directly from those of JK , instead of computing the necessary

modi�ed moments as an intermediate step.

The computation of the Jacobi matrixJ!;n used to obtainF n
! proceeds as follows:

�̂ 2
0 = � 2

0 + r0 � f

s0 = � 0

�̂ 2
0

t0 = � 2
0

�̂ 2
0

�̂ 1 = � 1 + s0(r1 � f)

q1 = Lf 	 (�̂ 1
 f)

�̂ 2
1 = t0� 2

1 + s0(r1 � q1)

s1 = � 1

�̂ 2
1
s0

�̂ 2 = � 2 + s1(r2 � q1) + (� 1 � �̂ 1)

Under the same assumptions on the implementation as for the symmetric case, a

total of 55N + 19N logN oating-point operations are required. Nearly half of these

operations occur in the �nal step, which is the computation of �̂ 2. It should be noted

that r2 must be computed, but this task need only be performed once, rather than

at each time step.

90 CHAPTER 4. IMPLEMENTATION

4.3.3 Obtaining and Using Quadrature Rules

Once we have obtained all of the required Jacobi matrices, computing un+1 consists

of the following operations:

1. The eigenvalues and eigenvectors of each Jacobi matrix must be computed. In

the 2 � 2 case, computing the eigenvalues requires one addition to compute

the trace, two multiplications and an addition to compute the determinant,

two multiplications and one addition to compute the discriminant, and one

square root, two additions, and two multiplications to obtain the roots of the

characteristic polynomial.

Once the eigenvalues are obtained, the non-normalized eigenvectors can be com-

puted in one addition when the Jacobi matrix is symmetric, ortwo if it is non-

symmetric. Normalization of each eigenvector requires four multiplications, one

addition, and a square root. In summary, the operation countfor the sym-

metric case is 14 multiplications, 8 additions, and three square roots in the

symmetric case, and 14 multiplications, 9 additions, and three square roots in

the unsymmetric case.

2. For each Jacobi matrixJ , the quantity eT
1 exp[� J � t]e1 needs to be computed.

If J is symmetric, this requires four multiplications, two exponentiations, and

two additions. If J is unsymmetric, an additional two multiplications and one

addition is required.

3. Each approximate integraluH exp[� L � t]v , whereu 6= v, needs to be scaled by

the normalization constant b = huH v. In the symmetric caseu = v, u and v

are chosen so thatb= 1.

4. One subtraction and one multiplication is then required to obtain each Fourier

coe�cient of un+1 .

5. Having computed all Fourier coe�cients, an inverse FFT isneeded to obtain

un+1 .

4.4. PRECONDITIONING 91

In all, the operation count required to computeun+1 , once all Jacobi matrices have

been computed, is 73N + N logN , assuming square roots and exponentiations each

count as one operation. However, 33N of these operations only need to be carried

out once, since the symmetric Jacobi matrices are independent of the solution.

4.4 Preconditioning

The rules for symbolic calculus introduced in Section 3.3 can easily be implemented

and provide a foundation for algorithms to perform unitary similarity transformations

on pseudodi�erential operators. In this section we will develop practical implemen-

tations of the local and global preconditioning techniquesdiscussed in Chapter 3.

4.4.1 Simple Canonical Transformations

First, we will show how to e�ciently transform a di�erential operator L(x; D) into

a new di�erential operator ~L(y; D) = U� L(x; D)U where U is a Fourier integral

operator related to a canonical transformation �(y; �) = (x; �) by Egorov's Theorem.

For clarity we will assume that L(x; D) is a second-order operator, but the resulting

algorithm can easily be applied to operators of arbitrary order.

Algorithm 4.2 Given a self-adjoint di�erential operator L(x; D) and a function

� 0(x) satisfying � 0(x) > 0 and
R2�

0 � 0(x) dx = 1, the following algorithm computes the

di�erential operator ~L = U� LU whereUf (x) =
p

� 0(x)f (� (x)).

� =
Rx

0 � 0(s) ds

L = � � 1=2L� 1=2

C1 = 1
~L = 0

for j = 0; : : : ; m;

for k = j + 1; : : : ; 2;

Ck = C0
k + Ck� 1� 0

end

92 CHAPTER 4. IMPLEMENTATION

L j = 0

for k = 0; : : : ; j;

L j = L j + ((aj Ck+1) � � � 1)D k

end
~L = ~L + L j

end

In addition to transforming the operator L(x; D), the initial data f (x) must be trans-

formed into ~f = U� f . This can be accomplished e�ciently using cubic splines to

compute the composition off with � � 1. Clearly, this algorithm requiresO(N logN)

time, assuming that each function is discretized on anN -point grid and that the fast

Fourier transform is used for di�erentiation.

4.4.2 Eliminating Variable Coe�cients

Suppose we wish to transform anmth-order self-adjoint di�erential operator L(x; D)

into ~L(x; D) = Q� (x; D)L(x; D)Q(x; D) where coe�cients of order J and above are

constant. After we apply Algorithm 4.2 to makeam (x) constant, we can proceed as

follows:

j = m � 2

k = 1

while j > = J

Let aj (x) be the coe�cient of order j in L(x; D)

� j = D + (aj (x)=2am (x))

Let E(x; D) = � j (x)(D +)k

Let Q(x; D) = exp[(E(x; D) � E � (x; D))=2]

L(x; D) = Q� (x; D)L(x; D)Q(x; D)

j = j � 2

k = k + 2

end

4.4. PRECONDITIONING 93

SinceL(x; D) is self-adjoint, this algorithm is able to take advantage of Proposition

3.2 to avoid examining odd-order coe�cients.

In a practical implementation, one should be careful in computing Q� LQ. Using

symbolic calculus, there is much cancellation among the coe�cients. However, it is

helpful to note that

exp[� A(x; D)]L(x; D) exp[A(x; D)] =
1X

`=0

1
`!

C` (x; D); (4.21)

where the operatorsf C`(x; D)g satisfy the recurrence relation

C0(x; D) = L(x; D); C`(x; D) = C` � 1(x; D)A(x; D) � A(x; D)C` � 1(x; D); (4.22)

and eachC` (x; D) is of order m + `(k � 1), where k < 0 is the order ofA(x; D).

Expressions of the formA(x; D)B(x; D) � B (x; D)A(x; D) can be computed without

evaluating the �rst term in (3.14) for each of the two products, since it is clear that

it will be cancelled.

The operator Q(x; D) must be represented using a truncated series. In order to

ensure that all coe�cients of L(x; D) of order J or higher are correct, it is necessary

to compute terms of orderJ � m or higher. With this truncated series representation

of Q(x; D) in each iteration, the algorithm requiresO(N logN) oating-point opera-

tions when anN -point discretization of the coe�cients is used and the fastFourier

transform is used for di�erentiation. It should be noted, however, that the number

of terms in the transformed operatorL(x; D) can be quite large, depending on the

choice ofJ .

4.4.3 Using Multiple Transformations

When applying multiple similarity transformations such asthose implemented in this

section, it is recommended that a variable-grid implementation be used in order to

represent transformed coe�cients as accurately as possible. In applying these trans-

formations, error is introduced by pointwise multiplication of coe�cients and com-

puting composition of functions using interpolation, and these errors can accumulate

94 CHAPTER 4. IMPLEMENTATION

very rapidly when applying several transformations.

4.5 Other Implementation Issues

In this section we discuss other issues that must be addressed in a practical imple-

mentation of Algorithms 2.2 and 2.4.

4.5.1 Parameter Selection

We now discuss how one can select three key parameters in the algorithm: the number

of quadrature nodesK , the time step � t, and the scalar� ! by which e! is perturbed

to compute quantities of the form

eH
! S(� t)[e! + � ! f]; (4.23)

or

(e! + � ! f)H S(� t)[e! + � ! f]; (4.24)

for some gridfunctionf . We use the notation� ! to emphasize the fact that� ! can

vary with ! .

While it is obviously desirable to use a larger number of quadrature nodes, various

di�culties can arise in addition to the expected computational expense of additional

Lanczos iterations. As is well known, the Lanczos method su�ers from loss of orthog-

onality of the Lanczos vectors, and this vulnerability increases with the number of

iterations since it tends to occur as Ritz pairs converge to eigenpairs (for details see

[21]). Furthermore, the number of terms in the symbolic representations of Lanczos

vectors presented in Section 4.2 grow very rapidly as the number of quadrature nodes

K increases. If a variable-grid implementation is used, increasingK also dramatically

increases the storage requirements for these representations.

In order to choose an appropriate time step �t, one can compute components of

the solution using a Gaussian quadrature rule, and then extend the rule to a Gauss-

Radau rule and compare the approximations, selecting a smaller � t if the error is too

4.5. OTHER IMPLEMENTATION ISSUES 95

large relative to the norm of the data. Alternatively, one can use the Gaussian rule

to construct a Gauss-Kronrod rule and obtain a second approximation; for details see

[5]. However, it is useful to note that the time step only plays a role in the last stage

of the computation of each component of the solution. It follows that one can easily

construct a representation of the solution that can be evaluated at any time, thus

allowing a residual@u=@t+ L(x; D)u to be computed. This aspect of our algorithm

is fully exploited in Section 6.1.

By estimating the error in each component, one can avoid unnecessary construc-

tion of quadrature rules. For example, suppose that a timestep � t has been selected,

and the approximate solution ~u(x; � t) has been computed using Algorithm 2.2 or

2.4. Before using this approximate solution to construct the quadrature rules for

the next time step, we can determine whether the rules constructed using the initial

data f (x) can be used to compute any of the components of ~u(x; 2� t) by evaluating

the integrand at time 2� t instead of � t. If so, then there is no need to construct

new quadrature rules for these components. The following modi�cation of Algorithm

2.2 encapsulates this idea. It is assumed that an error estimate for each integral is

obtained using some quadrature rule, as discussed in the previous paragraph.

Algorithm 4.3 Given a gridfunction f representing the initial data f (x), a �nal

time t f inal and a timestep � t such that t f inal = n� t for some integern, the following

algorithm computes an approximation~un+1
j to the solution u(x; t) of (1.1), (1.2), (1.4)

evaluated at each gridpointx j = jh for j = 0; 1; : : : ; N � 1 with h = 2�=N and times

tn , where 0 = t0 < t 1 < � � � < t n = t f inal .

u0 = f

t = 0

for ! = � N=2 + 1; : : : ; N=2 � 1

n! = 0

Choose a positive constant� !

Compute the Jacobi matricesJ! and J!;n !

using Algorithm 2.3

end

96 CHAPTER 4. IMPLEMENTATION

while tn < t f inal do

Select a timestep �t

repeat

tn+1 = tn + � t

for ! = � N=2 + 1; : : : ; N=2 � 1

repeat

u1 = eH
1 exp[� J! (tn+1 � tn !)]e1

u2 = eH
1 exp[� J!;n ! (tn+1 � tn !)]e1

ûn+1
! = (u2 � u1)=� !

if error in ûn+1
! is too largethen

if n > n ! then

n! = n

RecomputeJ!;n ! , u1, u2, and ûn+1
!

else

Choose a smaller timestep �t

Abort computation of ûn+1

end

end

until error in ûn+1
! is su�ciently small

end

until ûn+1 is computed

~un+1 = T � 1ûn+1

end

Finally, we discuss selection of the parameter� ! . On the one hand, smaller values

of � ! are desirable because, as previously discussed, the quadrature error is reduced

when the vectorsu and v in uH f (L)v are approximate eigenfunctions of the matrix

L when L is a discretization of a di�erential operator. Furthermore, smaller values

of � ! minimize lost precision resulting from the subtraction of integrals that are

perturbations of one another.

However, � omega should not be chosen to be so small thate! and e! + � ! f are

virtually indistinguishable for the given precision. In the case of (4.23),� ! must be

4.6. SUMMARY 97

chosen su�ciently small so that the measure remains positive and increasing. This is

easily checked when the vectorsu and v are real: if any of the weights are negative,

a smaller value of� ! must be chosen. In practice, it is wise to choose� ! to be

proportional to kf k.

4.5.2 Reorthogonalization

As discussed in [21], the symmetric Lanczos process can su�er from loss of orthogo-

nality among the Lanczos vectors, causing deterioration ofaccuracy in the computed

nodes and weights for Gaussian quadrature and loss of several orders of accuracy in

integrals computed using these nodes and weights. There areseveral known strate-

gies used for reorthogonalization (see for instance [20], [35], [36], [40]), but in the

context of using Gaussian quadrature for solving time-dependent PDE it is impor-

tant to choose a method that can be used with the representations of Lanczos vectors

presented earlier in this section. One such choice isselective orthogonalization, �rst

presented in by Parlett and Scott in [36]. This technique provides a simple test for

determining whether it is necessary to orthogonalize, as well as which vectors must

be included in the orthogonalization process. Given our representation of Lanczos

vectors, it is best to perform the orthogonalization using the modi�ed Gram-Schmidt

procedure (see [2], [37]), which can easily be adapted to usethis representation.

4.6 Summary

In this chapter we have succeeded in designing an implementation of Algorithms 2.2

and 2.4 that require O(N logN) oating-point operations per time step. Unfortu-

nately, this operation count can be written asT(N) = C1N logN + C2N logN +

lower-order terms, whereC1 and C2 are still unacceptably large. However, there are

three factors which mitigate this concern:

� Due to the high-order accuracy of the quadrature rules involved, fewer time steps

are required to obtain a su�ciently accurate solution than �nite-di�erence or

Fourier spectral methods that are much less expensive per time step.

98 CHAPTER 4. IMPLEMENTATION

� Unlike semi-implicit time-stepping methods, Algorithms 2.2 and 2.4 allow signif-

icant parallelism, since much of the computation of a singleFourier component

of the solution is entirely independent of the computation of other components.

� Speci�c features of the operatorL(x; D) can be exploited to optimize the process

of computing Jacobi matrices signi�cantly, as discussed inSection 4.3.1.

In future work, attempts will be made to reduce the overall operation count necessary

to compute an accurate solution at timet f inal , through a combination of reducing the

number of time steps needed and improving the e�ciency of each time step.

Chapter 5

Numerical Results

This chapter describes several numerical experiments thatmeasure the e�ectiveness of

the methods developed during the preceding chapters. We will compare the accuracy

and e�ciency of our algorithm to standard solution methods for a variety of problems,

in an attempt to demonstrate its strengths and weaknesses.

5.1 Construction of Test Cases

In many of the following experiments, it is necessary to construct functions of a given

smoothness. To that end, we rely on the following result (see[27]):

Theorem 5.1 (Gustafsson, Kreiss, Oliger) Let f (x) be a 2� -periodic function

and assume that itspth derivative is a piecewiseC1 function. Then,

jf̂ (!)j � constant=(j! jp+1 + 1) : (5.1)

Based on this result, the construction of aCp+1 function f (x) proceeds as follows:

1. For each! = 1; : : : ; N=2 � 1, choose the discrete Fourier coe�cientf̂ (!) by

setting f̂ (!) = (u+ iv)=j! p+1 +1j, whereu and v are random numbers uniformly

distributed on the interval (0; 1).

2. For each! = 1; : : : ; N=2 � 1, set f̂ (� !) = f̂ (!).

99

100 CHAPTER 5. NUMERICAL RESULTS

3. Set f̂ (0) equal to any real number.

4. Set f (x) = 1p
2�

P
j ! j<N= 2 f̂ (!)ei!x .

In the following test cases, coe�cients and initial data areconstructed so that their

third derivatives are piecewiseC1, unless otherwise noted.

We will now introduce some di�erential operators and functions that will be used

in a number of the experiments described in this chapter and Chapter 6. As most of

these functions and operators are randomly generated, we will denote by R1; R2; : : :

the sequence of random numbers obtained using MATLAB's random number genera-

tor rand after setting the generator to its initial state. These numbers are uniformly

distributed on the interval (0; 1).

� We will make frequent use of a two-parameter family of functions de�ned on

the interval [0; 2�]. First, we de�ne

f 0
j;k (x) = Re

8
<

:

X

j ! j<N= 2;! 6=0

f̂ j (!)(1 + j! j)k+1 ei!x

9
=

;
; j; k = 0; 1; : : : ; (5.2)

where

f̂ j (!) = RjN +2(! + N=2)� 1 + iR jN +2(! + N=2) : (5.3)

The parameter j indicates how many functions have been generated in this

fashion since setting MATLAB's random number generator to its initial state,

and the parameterk indicates how smooth the function is. Figure 5.1 shows

selected functions from this collection.

In many cases, it is necessary to ensure that a function is positive or negative,

so we de�ne the translation operatorsE + and E � by

E + f (x) = f (x) � min
x2 [0;2�]

f (x) + 1 ; (5.4)

E � f (x) = f (x) � max
x2 [0;2�]

f (x) � 1: (5.5)

5.1. CONSTRUCTION OF TEST CASES 101

0 2 4 6 8
-0.5

0

0.5

1

1.5

2

x

f 0,
0(x

)

j=0, k=0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

x

f 0,
3(x

)

j=0, k=3

0 2 4 6 8
-0.5

0

0.5

1

1.5

x

f 1,
0(x

)

j=1, k=0

0 2 4 6 8
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

f 1,
3(x

)

j=1, k=3

Figure 5.1: Functions from the collectionf j;k (x), for selected values ofj and k.

102 CHAPTER 5. NUMERICAL RESULTS

0

2

4

0

2

4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

xy

g 0,
3(x

,y
)

j=0, k=3

0

2

4

0

2

4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

xy

g 1,
3(x

,y
)

j=1, k=3

Figure 5.2: Functions from the collectiongj;k (x; y), for selected values ofj and k.

� We de�ne a similar two-parameter family of functions de�nedon the rectangle

[0; 2�] � [0; 2�]:

gj;k (x; y) = Re

8
<

:

X

j ! j ;j � j<N= 2;!� 6=0

ĝj (!; �)(1 + j! j)k+1 (1 + j� j)k+1 ei (!x + �y)

9
=

;
;

(5.6)

where j and k are nonnegative integers, and

ĝj (!; �) = RjN 2+2[N (! + N=2� 1)+(� + N=2)]� 1 + iR jN 2+2[N (! + N=2� 1)+(� + N=2)] : (5.7)

Figure 5.2 shows selected functions from this collection.

5.1. CONSTRUCTION OF TEST CASES 103

� Many experiments will involve the one-parameter family of randomly generated

self-adjoint di�erential operators

L k(x; D) = D
�
E � f 0;kD

�
+ E + f 1;k ; k = 0; 1; : : : : (5.8)

where the operatorsE + and E � were de�ned in (5.4), (5.5).

� Another one-parameter family of di�erential operators that we will use is de�ned

by

M j (x; D) = D
�
E � [D j f 0;3]D

�
+ E + [D j f 1;3]; j = 0; 1; : : : : (5.9)

� We will use the operator that was �rst introduced in (3.32) to illustrate local

preconditioning,

P(x; D) = D
��

1 +
1
2

sinx
�

D
�

�
�

1 �
1
2

cos 2x
�

: (5.10)

Many of the experiments described in this chapter and Chapter 6 are intended to

illustrate the convergence behavior of Algorithms 2.2 and 2.4, with certain varia-

tions, on various problems. In all such experiments, unlessotherwise noted,N = 64

grid points are used, and solutionsu(j)(x; t) are computed using time steps �t =

2� j , for j = 0; : : : ; 6. The error estimates are obtained by computingku(j)(�; 1) �

u(6) (�; 1)k=ku(6) (�; 1)k. This method of estimating error assumes thatu(6) (x; t) is a

su�ciently accurate approximation to the exact solution, but this has proven in prac-

tice to be a valid assumption by comparingu(6) against approximate solutions com-

puted using established methods, and by comparingu(6) against solutions obtained

using Algorithms 2.2 and 2.4 with smaller time steps. It should be noted that we

are not seeking a sharp estimate of the error, but rather an indication of the rate of

convergence, and for this goal, usingu(6) as an approximation to the exact solution

is su�cient. More rigorous error estimation will appear in future work.

104 CHAPTER 5. NUMERICAL RESULTS

5.2 Timestep Selection

For our �rst example, we will solve the problem

@u
@t

(x; t) + L3(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (5.11)

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (5.12)

u(x; t) = u(x + 2�; t); t > 0 (5.13)

using the following methods:

� The Crank-Nicolson method with central di�erencing

� Algorithm 2.2, with 2 nodes determined by Gaussian quadrature

� Algorithm 2.2, with 2 nodes determined by Gaussian quadrature and one ad-

ditional prescribed node. The prescribed node is obtained by estimating the

smallest eigenvalue ofL using the symmetric Lanczos algorithm.

In all cases,N = 64 gridpoints are used. Forj = 0; : : : ; 6, we compute an approximate

solution u(j)(x; t) at t = 1, using � t = 2 � j . Figure 5.3 shows estimates of the relative

error in u(j)(x; 1) for j = 0; : : : ; 5. Note the signi�cant bene�t of the prescribed node

in the Gauss-Radau rule.

5.3 Smoothness of Coe�cients

In this section we examine the performance of Algorithm 2.2 for solving

@u
@t

(x; t) + M k(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; k = 0; 1; 2; (5.14)

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (5.15)

u(x; t) = u(x + 2�; t); t > 0: (5.16)

We �rst compute u(x; t) at t = 1 using timesteps � t = 2 � j for j = 0; : : : ; 6. We

then solve the problem again withM k(x; D) for k = 1; 2. Figure 5.4 illustrates the

5.3. SMOOTHNESS OF COEFFICIENTS 105

10
-2

10
-1

10
0

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Relative error for varying time steps

time step

re
la

tiv
e

er
ro

r

Crank-Nicolson
Gauss
Gauss-Radau

Figure 5.3: Estimates of relative error in the computed solution ~u(x; t) of (5.11),
(5.12), (5.13) at t = 1. Solutions are computed using �nite di�erences with Crank-
Nicolson (solid curve), Algorithm 2.2 with Gaussian quadrature (dashed curve), and
Algorithm 2.2 with Gauss-Radau quadrature (dotted-dashedcurve) with various time
steps andN = 64 grid points.

106 CHAPTER 5. NUMERICAL RESULTS

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence for operators of varied smoothness (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for operators of varied smoothness (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

Figure 5.4: Estimates of relative error in the approximate solution ~u(x; t) of (5.14),
(5.15), (5.16) at t = 1. Solutions are computed using Algorithm 2.2 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

e�ect of smoothness on the algorithm. By Theorem 2.5, the error is bounded by

C1� t3 when using the Gaussian rule andC2� t4 when using the Gauss-Radau rule,

but the constants C1 and C2 are larger when the coe�cients are less smooth, and

lower-order terms in the local truncation error exhibit larger constants as well. As a

result, the more oscillatory the coe�cients are, the smaller the values of � t at which

the theoretical convergence rate can be observed. We will revisit this issue when we

study the e�ect of preconditioning on convergence.

5.3. SMOOTHNESS OF COEFFICIENTS 107

For our next example, we solve the problem

@u
@t

(x; t) + kP(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (5.17)

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (5.18)

u(x; t) = u(x + 2�; t); t > 0: (5.19)

The parameterk is used to increase the amplitude of the coe�cients. We solvethis

problem for k = 1; 2; 4 to study the e�ect of increasing variance in the coe�cientson

the convergence. Figure 5.5 illustrates this e�ect, which is somewhat similar to the

e�ect of varying smoothness: the rate of convergence is slowed, though this e�ect is

much more pronounced in the case of the Gaussian rule when using larger timesteps.

It should be noted, however, that because the decay rate of the Fourier components

of the coe�cients is the same in all cases, the e�ect on the rate of convergence is

much less noticeable than when the decay rate is varied, as inthe previous example.

Next, we solve the problem

@u
@t

(x; t) + L3(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (5.20)

u(x; 0) = E + [D ` f 0;3(x)]; 0 < x < 2�; (5.21)

u(x; t) = u(x + 2�; t); t > 0; (5.22)

for ` = 0; 1; 2, to study the e�ect of the smoothness of the initial data on convergence.

The results are illustrated in Figure 5.6. While the smoothness of the initial data does

not a�ect the convergence to the extent that the smoothness of the coe�cients does,

it is still signi�cant. It is generally best in the case of non-smooth data to use more

gridpoints, in order to reduce the error introduced by truncation of Fourier series.

Finally, to test the limits of our methods, we apply them to the problem

@u
@t

(x; t) � D
�

1
2

H (x � �)Du
�

+
1
2

H (x � �)u = 0; 0 < x < 2�; t > 0; (5.23)

u(x; 0) = f 0;0(x); 0 < x < 2�; (5.24)

108 CHAPTER 5. NUMERICAL RESULTS

10
-2

10
-1

10
0

10
-5

10
0

Convergence for operators of varied amplitude (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

1x
2x
4x

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for operators of varied amplitude (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

1x
2x
4x

Figure 5.5: Estimates of relative error in the approximate solution ~u(x; t) of (5.17),
(5.18), (5.19) at t = 1. Solutions are computed using Algorithm 2.2 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

5.3. SMOOTHNESS OF COEFFICIENTS 109

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence for initial data of varied smoothness (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for initial data of varied smoothness (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

Figure 5.6: Estimates of relative error in the approximate solution ~u(x; t) of (5.20),
(5.21), (5.22) at t = 1. Solutions are computed using Algorithm 2.2 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

110 CHAPTER 5. NUMERICAL RESULTS

u(x; t) = u(x + 2�; t); t > 0: (5.25)

Figure 5.7 compares the performance of Algorithm 2.2 with the Crank-Nicolson

method and the Fourier method. In this case, Gaussian and Gauss-Radau quadrature

exhibit nearly cubic convergence for su�ciently small � t, whereas the Crank-Nicolson

method with �nite di�erencing and the Fourier method used with Matlab's sti� ODE

solver ode23s both exhibit linear convergence. It should be noted that thedata for

the Crank-Nicolson method is misleading, since the computed solution includes oscil-

lations caused by Gibbs' phenomenon, whereas the true solution is smooth. It should

be noted that these results were obtained using thevariable-grid implementation of

the ^ operation introduced in Section 4.2. Figure 5.8 illustrates the di�erence in the

solutions computed using the �xed-grid and variable-grid approaches.

5.4 Component Analysis

Figure 5.9 shows the accuracy in each frequency component ofthe computed solu-

tion using various methods. This accuracy is measured by computing the relative

di�erence in the �rst and second derivatives of approximatesolutions ~u j and ~u j � 1 to

the problem (5.11), (5.12), (5.13). Each approximate solution ~u j is computed using

� t = 2 � j , for j = 0; : : : ; 6, and N = 64 gridpoints. In other words, we are measuring

the error in u j using the H 1 and H 2 seminorms (see [30]), where

kuk2
H r =

Z 2�

0
jD r u(x)j dx: (5.26)

The methods used for the comparison are Crank-Nicolson with�nite di�erencing,

backward Euler with the Fourier method, and Gauss-Radau quadrature with two

Gaussian quadrature nodes. As can easily be seen, Gauss-Radau quadrature provides

more rapid convergence for both higher- and lower-frequency components than the

other two methods. Gaussian quadrature with no prescribed nodes does not perform

as well, since the lower bounds that it yields for each integral are not as sharp as the

upper bounds obtained via Gauss-Radau quadrature.

5.4. COMPONENT ANALYSIS 111

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Relative error for varying time steps, discontinuous data, parabolic problem

time step

re
la

tiv
e

er
ro

r

Crank-Nicolson
Fourier
Gauss
Gauss-Radau

Figure 5.7: Estimates of relative error in the approximate solution ~u(x; t) to (5.23),
(5.24), (5.25) at t = 1. Solutions are computed using �nite di�erences with Crank-
Nicolson (solid curve), the Fourier method (dotted curve),Gaussian quadrature
(dashed curve) and Gauss-Radau quadrature (dotted-dashedcurve) with various time
steps andN = 64 grid points.

112 CHAPTER 5. NUMERICAL RESULTS

0 1 2 3 4 5 6 7
0.33

0.335

0.34

0.345

0.35

0.355

0.36
Solutions computed with fixed and variable grids, parabolic problem

x

u(
x,

t)
, t

=
1

Fixed grid
Variable grid

Figure 5.8: Approximate solutions of (5.23), (5.24), (5.25) computed using the �xed-
grid and variable-grid methods from Section 4.2. In both cases, N = 64 gridpoints
are used to represent the approximate solutions, and �t = 1=64.

5.4. COMPONENT ANALYSIS 113

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Relative error in first derivative

time step

re
la

tiv
e

er
ro

r

FD/Crank-Nicolson
Fourier/Backward Euler
Gauss-Radau

10
-2

10
-1

10
0

10
-6

10
-4

10
-2

10
0

Relative error in second derivative

time step

re
la

tiv
e

er
ro

r

FD/Crank-Nicolson
Fourier/Backward Euler
Gauss-Radau

Figure 5.9: Relative error estimates in �rst and second derivatives of approximate
solutions to (5.11), (5.12), (5.13), measured using theH 1 and H 2 seminorms, respec-
tively. In all casesN = 64 gridpoints are used.

114 CHAPTER 5. NUMERICAL RESULTS

5.5 Selection of Quadrature Nodes

We now investigate how convergence is a�ected by increasingthe number of Gaussian

quadrature nodes used. Figure 5.10 shows error estimates for approximate solutions

to (5.11), (5.12), (5.13), where �t = 2 � j for j = 0; : : : ; 6, and N = 64 gridpoints are

used. As the number of quadrature nodes increases, the errordecreases, but the rate

of convergence is approximately the same as with 2 nodes. This is likely due to the

fact that with each additional node, the degree of the polynomial factor in the error

(2.16) increases by 2, resulting in a larger error unless �t is su�ciently small to o�set

the growth in the polynomial. Figure 5.11 compares the e�ciency of using Gaussian

quadrature with various numbers of nodes. Unfortunately, the additional accuracy

is more than o�set by increased computational e�ort in constructing the Jacobi ma-

trices and associated quadrature rules. It is hoped that with further advances in the

optimization of this process, as well as improved techniques for selecting quadrature

nodes and weights, such as using rational functions to approximate the exponential

instead of interpolating polynomials, this situation can eventually be remedied.

5.6 Preconditioning

In this section we will study the e�ects of preconditioning on di�erential operators in

the context of various solution methods for initial-boundary value problems.

First, we consider the problem

@u
@t

(x; t) � P(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (5.27)

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (5.28)

u(x; t) = u(x + 2�; t); t > 0: (5.29)

Figure 5.12 shows the symbolL(x; �) before preconditioning is applied. Figure 5.13

shows the symbol ofA = U� P U where U is a Fourier integral operator induced

by a canonical transformation that makes the leading coe�cient constant. Finally,

5.6. PRECONDITIONING 115

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Relative error for varying number of quadrature nodes

time step

re
la

tiv
e

er
ro

r

2 nodes
3 nodes
4 nodes

Figure 5.10: Relative error estimates in approximate solutions of (5.11), (5.12), (5.13)
computed using Gaussian quadrature withK = 2; 3; 4 nodes. In all casesN = 64
gridpoints are used, with time steps �t = 2 � j for j = 0; : : : ; 6.

116 CHAPTER 5. NUMERICAL RESULTS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0

2

4

6

8

10

12

14
Efficiency comparison of MATLAB implementations

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

relative error

2 nodes
3 nodes
4 nodes

Figure 5.11: Plot of relative error estimates versus execution time in computing
approximate solutions of (5.11), (5.12), (5.13) using Gaussian quadrature with K =
2; 3; 4 nodes. In all casesN = 64 gridpoints are used, with time steps �t = 2 � j for
j = 0; : : : ; 6.

5.6. PRECONDITIONING 117

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100
Symbol of original variable-coefficient operator P(x,D)

|P
(x

,x
)|

x

Figure 5.12: Symbol of original variable-coe�cient operator P(x; D) de�ned in (5.10)

Figure 5.14 shows the symbol ofB = Q� AQ where Q is designed to make the zero-

order coe�cient of A constant, using the technique described in Section 3.5. The

transformation U smooths the symbol ofP(x; D) so that the curvature in the surface

de�ned by jA(x; �)j has uniform curvature with respect to� . The transformation Q

yields a symbol that closely resembles that of a constant-coe�cient operator except

at the lowest frequencies.

We now solve the problem (5.27), (5.28), (5.29) with and without preconditioning.

As before, we use two nodes determined by Gaussian quadrature and one prescribed

node to obtain a Gauss-Radau rule. Figure 5.15 illustrates the convergence behavior

in both cases. We see that preconditioning by making both thesecond-order and

118 CHAPTER 5. NUMERICAL RESULTS

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

Symbol of transformed operator A(x,D) (a
2
=constant)

|A
(x

,x
)|

x

Figure 5.13: Symbol of transformed operatorA(x; D) = U� P(x; D)U whereP(x; D)
is de�ned in (5.10) andU is chosen to make the leading coe�cient ofA(x; D) constant.

5.6. PRECONDITIONING 119

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

Symbol of transformed operator B(x,D) (a
0
=constant)

|B
(x

,x
)|

x

Figure 5.14: Symbol of transformed operatorB(x; D) = Q� U� L(x; D)UQ where
P(x; D) is de�ned in (5.10) and the unitary similarity transformations Q and U
make B(x; D) a constant-coe�cient operator modulo terms of negative order.

120 CHAPTER 5. NUMERICAL RESULTS

zeroth-order coe�cients constant, at the expense of introducing variable coe�cients

of negative order, provides signi�cant improvement for theGaussian rule. For the

largest time step � t = 1, the relative error is approximately 1/3 of the error obtained

without preconditioning, and for the smallest time step �t = 1=32, this ratio has de-

creased even further to approximately 1/6 as the cubic convergence in time predicted

by Theorem 2.5 has nearly been attained in both cases. On the other hand, precon-

ditioning adds little to the already superior accuracy provided by the Gauss-Radau

rule.

Let us now examine the component-wise error in both cases. Figure 5.16 illustrates

the relative error in each frequency component in the �nal solution computed both

with and without preconditioning. Clearly, preconditioning yields signi�cantly greater

accuracy for components corresponding to higher frequencies. It is also interesting to

note that preconditioning provided signi�cantly greater accuracy at larger timesteps.

It is the hope that with improvements in the implementation, this advantage can be

further exploited to quickly compute accurate solutions over larger time intervals.

Next, we consider the problem

@u
@t

(x; t) + L1(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (5.30)

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (5.31)

u(x; t) = u(x + 2�; t); t > 0: (5.32)

In this case, the coe�cients are not as smooth. As the convergence behavior in Figure

5.17 illustrates, preconditioning is bene�cial in the Gauss-Radau case, but not for the

Gaussian case when the timestep is smaller.

It is worthwhile to investigate whether these preconditioning techniques are help-

ful when using standard numerical methods to obtain approximate solutions. To that

end, Figure 5.18 illustrates the e�ect of preconditioning on explicit spectral methods

applied to the problem (5.27), (5.28), (5.29), as well as theproblem (5.30), (5.31),

(5.32). In both cases, a Galerkin method is used to obtain theFourier components of

the approximate solution, as discussed in Section 1.2. As this �gure shows, precondi-

5.6. PRECONDITIONING 121

10
-2

10
-1

10
0

10
-6

10
-4

10
-2

10
0

Convergence for various levels of preconditioning (smooth coefficients, Gaussian rule)

time step

re
la

tiv
e

er
ro

r

none
a

2
 constant

a
0
 constant

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for various levels of preconditioning (smooth coefficients, Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

none
a

2
 constant

a
0
 constant

Figure 5.15: Estimates of relative error in the approximatesolution ~u(x; t) of (5.27),
(5.28), (5.29) at t = 1, computed using no preconditioning (solid curve), a similarity
transformation to make the leading coe�cient of A(x; D) = U� P(x; D)U constant
(dashed curve), and a similarity transformation to makeB(x; D) = Q� U� P(x; D)UQ
constant-coe�cient modulo terms of negative order. In all casesN = 64 grid points
are used, with time steps �t = 2 � j for j = 0; : : : ; 6.

122 CHAPTER 5. NUMERICAL RESULTS

-40 -30 -20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Relative error in frequency components (Gaussian rule)

wave number

re
la

tiv
e

er
ro

r

none
a

2
 constant

a
0
 constant

Figure 5.16: Relative error in frequency components with and without preconditioning

5.6. PRECONDITIONING 123

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

Convergence for various levels of preconditioning (non-smooth coefficients, Gaussian rule)

time step

re
la

tiv
e

er
ro

r

none
a

2
 constant

a
0
 constant

10
-2

10
-1

10
0

10
-6

10
-4

10
-2

10
0

Convergence for various levels of preconditioning (non-smooth coefficients, Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

none
a

2
 constant

a
0
 constant

Figure 5.17: Estimates of relative error in the approximatesolution ~u(x; t) of (5.30),
(5.31), (5.32) at t = 1, computed using no preconditioning (solid curve), a similarity
transformation to make the leading coe�cient of A(x; D) = U� L(x; D)U constant
(dashed curve), and a similarity transformation to makeB(x; D) = Q� U� L(x; D)UQ
constant-coe�cient modulo terms of negative order. In all casesN = 64 grid points
are used, with time steps �t = 2 � j for j = 0; : : : ; 6.

124 CHAPTER 5. NUMERICAL RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
50

10
100

10
150

10
200

Convergence for various levels of preconditioning (Galerkin method, smooth coefficients)

time step

||u
(×,

1)
||

none
a

2
 constant

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
50

10
100

10
150

10
200

Convergence for various levels of preconditioning (Galerkin method, non-smooth coefficients)

time step

||u
(×,

1)
||

none
a

2
 constant

Figure 5.18: Size of solutions computed att = 1 using the Galerkin method with
forward Euler at various time steps, with and without preconditioning. Top �gure
is for problem (5.27), (5.28), (5.29) while bottom �gure is for problem (5.30), (5.31),
(5.32).

5.7. APPROXIMATING EIGENFUNCTIONS 125

tioning yields stability at a larger time step. Using the more advanced preconditioning

techniques developed in Section 3.5 do not provide additional bene�t for second-order

problems.

5.7 Approximating Eigenfunctions

By applying the preconditioning transformations to Fourier wavesei!x , excellent ap-

proximations to eigenvalues and eigenfunctions can be obtained. This follows from

the fact that if the operator Q� L(x; D)Q is close to a constant-coe�cient operator,

then ei!x is an approximate eigenfunction ofQ� L(x; D)Q, and thereforeQei!x should

be an approximate eigenfunction ofL(x; D).

Let L(x; D) = P(x; D) from (5.10). Figure 5.19 compares eigenfunctions com-

puted using this technique to eigenfunctions obtained by diagonalizing a matrix that

represents a discretization of the operatorL(x; D). Note that for high and low fre-

quencies alike, the eigenfunctions computed using these two approaches are indis-

tinguishable on a plot. Figure 5.20 displays the relative error, measured using the

L2 norm, in eigenfunctions corresponding to the lowest 25 eigenvalues ofP(x; D).

The transformation Q makes the second-order and zeroth-order coe�cients constant,

using the techniques presented in Sections 3.4 and 3.5.

5.8 Performance

In this section we will evaluate the performance of two variants of Algorithm 2.2.

In both cases, the required quadrature rules are constructed by evaluating symbolic

representations such as those presented in Chapter 4. The Jacobi matrices are com-

puted using the implementation in Section 4.3.1 and Algorithm 4.1. The performance

of both algorithms will also be compared against that of a �nite-di�erence scheme

applied to the same problem.

Figure 5.21 plots computation time versus accuracy for three methods applied to

the problem (5.11), (5.12), (5.13). The three methods are:

1. Finite di�erencing with Crank-Nicolson time-stepping

126 CHAPTER 5. NUMERICAL RESULTS

0 1 2 3 4 5 6 7
-0.2

-0.1

0

0.1

0.2
Approximate eigenfunctions of self-adjoint operator (high frequency)

x

v i(x
)

v
1
(x)

v
2
(x)

0 1 2 3 4 5 6 7
-0.2

-0.1

0

0.1

0.2
Approximate eigenfunctions of self-adjoint operator (low frequency)

x

v i(x
)

v
1
(x)

v
2
(x)

Figure 5.19: Approximate eigenfunctions ofP(x; D) from (5.10) generated by diago-
nalizing discretization matrix (v1(x)) and by preconditioning (v2(x))

5.8. PERFORMANCE 127

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

Relative error in approximate eigenfunctions of L(x,D)=D((1+sin(x)/2)D)-(1+sin(x)/2)

j

re
la

tiv
e

er
ro

r

Figure 5.20: Relative error, measured using theL2 norm, in approximate eigenfunc-
tions of P(x; D) from (5.10) generated by diagonalizing discretization matrix and by
preconditioning to make second-order and zeroth-order coe�cients constant

128 CHAPTER 5. NUMERICAL RESULTS

0 1 2 3 4 5 6 7 8
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Efficiency comparison of MATLAB implementations

execution time

re
la

tiv
e

er
ro

r

Crank-Nicolson
Gauss
Gauss-Radau

Figure 5.21: Plot of execution time versus accuracy for �nite-di�erence and Gaussian
quadrature methods used to compute approximate solution ofproblem (5.11), (5.12),
(5.13) at t = 1.

2. Algorithm 2.2 with 2 Gaussian quadrature nodes

3. Algorithm 2.2 with 2 Gaussian quadrature nodes and one prescribed node

The relative error in 5.21 is given by the relative di�erencebetween solutions com-

puted at time t = 1 at time steps � t and 2� t, for � t = 2 � j , j = 1; : : : ; 7. The

execution time is the clock time required by all three methods, implemented in MAT-

LAB. In all cases, N = 256 grid points are used for the spatial discretization. We

see that using a Gaussian rule are almost as e�cient as �nite-di�erence methods,

while a Gauss-Radau rule provides greater accuracy than �nite-di�erence methods in

5.8. PERFORMANCE 129

� t Relative Error Execution Time (Seconds)
1 1.011e-001 0.641

0.5 1.818e-002 0.671
0.25 3.215e-003 0.741

Crank-Nicolson 0.125 7.547e-004 0.861
0.0625 1.855e-004 1.121
0.03125 4.414e-005 1.612
0.015625 8.827e-006 2.634

1 1.903e-002 0.741
0.5 5.590e-003 0.801
0.25 1.334e-003 0.911

Gaussian quadrature 0.125 2.849e-004 1.141
0.0625 6.015e-005 1.592
0.03125 1.349e-005 2.514
0.015625 2.672e-006 4.396

1 1.183e-002 0.841
0.5 1.886e-003 0.961
0.25 2.407e-004 1.161

Gauss-Radau quadrature 0.125 2.526e-005 1.602
0.0625 2.416e-006 2.444
0.03125 2.103e-007 4.166
0.015625 1.558e-008 7.731

Table 5.1: Performance data for Crank-Nicolson, Gauss and Gauss-Radau methods
applied to (5.11), (5.12), (5.13) withN = 256 gridpoints

the same amount of time. Table 5.1 summarizes the performance data gathered for

these three methods. In practice, it is seen that the execution time scales approxi-

mately linearly with the number of gridpoints or the number of timesteps. This is

to be expected, since the methods requireO(N logN) time per time step, and the

O(N logN) complexity is due to the use of the Fast Fourier transform, for which

MATLAB's built-in implementation is used.

This performance data should be interpreted as a rough guideto the relative per-

formance of the methods compared, since, in all three cases,portions of the algorithms

are implemented in C and the remainder in MATLAB. A far more reliable comparison

would include full implementation of all algorithms in a compiled language such as

C. The computations described in Table 5.1 were performed using a Hewlett-Packard

130 CHAPTER 5. NUMERICAL RESULTS

ze5170 with a 2.0 GHz Pentium 4 processor, running Windows XPHome Edition and

Matlab Release 12.

5.9 Long-Term Evolution

For a problem of the form (1.1), (1.2), (1.4) where the operator L(x; D) is positive

de�nite, the solution u(x; t), wheret is su�ciently large, can be well-approximated by

a linear combination of the eigenfunctions ofL(x; D) corresponding to the smallest

eigenvalues. Therefore, it is worthwhile to compare the e�ciency of such an approach

to Krylov subspace methods.

We chooseL(x; D) to be the second-order self-adjoint operatorL3(x; D) de�ned

in Section 5.1, and compute select eigenfunctions using Rayleigh quotient iteration

(see [21]) on a discretization ofL(x; D) Of the form (2.5). Table 5.2 compares the

performance of this approach with that of Algorithm 2.2 using a 3-point Gauss-

Radau rule (i.e., K = 2) to compute solutions at t f inal = 10 and t f inal = 30. Note

that for t f inal = 10, Algorithm 2.2 achieves comparable accuracy in less time, while

the approach of computing eigenfunctions is more e�cient for t f inal = 30. Also,

note that reasonable accuracy was achieved using large timesteps, even though the

local truncation error is O(� t2K). The local truncation error, however, includes a

Riemann-Stieltjes integral of an exponentially decaying function. Since only a few

time steps are needed to compute an accurate approximation to a solution that is

essentially parallel to the lowest-frequency eigenfunction of L(x; D), it is worthwhile

to investigate whether Krylov subspace methods can be adapted to obtain an e�cient

algorithm for computing low-frequency eigenfunctions. Future work will examine such

an approach.

5.9. LONG-TERM EVOLUTION 131

N Relative error Execution time Execution time � t
ku � vk=kuk for u for v

t f inal = 10 (ku(�; 10)k � 3:418� 10� 4)
Convergence data

32 1.3750e-003 0.401 0.411 2
64 3.0001e-004 1.542 1.252 1

128 1.7537e-005 6.890 4.327 0.5
Fixed Accuracy

32 4.3085e-003 0.281 0.221 5
64 4.1877e-003 1.201 0.300 5

128 4.2002e-003 5.458 0.491 5
t f inal = 30 (ku(�; 30)k � 1:649� 10� 11)

Convergence data
32 2.3344e-003 0.130 0.401 6
64 7.8693e-004 0.417 2.523 1.5

128 8.3642e-008 2.093 17.355 0.375
Fixed Accuracy

32 4.1579e-003 0.090 0.171 15
64 4.2258e-003 0.370 0.250 15

128 4.2950e-003 1.702 0.430 15

Table 5.2: Performance data for Algorithm 2.2 with 3-point Gauss-Radau rule
(v(x; t)), and method of eigenfunction expansions (u(x; t)), applied to (1.1), (1.2),
(1.4) with L(x; D) de�ned to be the second-order self-adjoint positive de�nite opera-
tor L3(x; D) de�ned in Section 5.1. N = 64 gridpoints are used in all cases.

Chapter 6

Conclusions

6.1 Extensions

Throughout this thesis, in order to simplify the presentation, we have restricted our

discussion to problems in one space dimension that have the form (1.1), (1.2), (1.4),

where the operatorL(x; D) is second-order and self-adjoint. In this section, we will

examine the applicability of our methods to a broader range of problems.

6.1.1 Problems in Higher Space Dimensions

The techniques presented in this thesis can be generalized to multi-dimensional prob-

lems. Problems inn space dimensions can be solved using an analogue of Algorithm

2.2 by choosing an appropriate basis of simple waves exp[i (! 1x1 + � � � + ! nxn)] and

a discretization of the operatorL(x1; : : : ; xn ; D). Egorov's theorem holds in higher

dimensions, so unitary similarity transformations can be constructed for such cases.

We illustrate the process of generalizing to higher dimensions with an example.

Let R be the rectangle

R = f (x; y)j0 < x < 2�; 0 < y < 2� g: (6.1)

132

6.1. EXTENSIONS 133

We wish to solve the problem

@u
@t

(x; y; t) + L(x; y; D)u(x; y; t) = 0 ; (x; y) 2 R; t > 0; (6.2)

u(x; y; 0) = E + g0;3(x; y); (x; y) 2 R; (6.3)

u(x; y; t) = u(x + 2�; y; t) = u(x; y + 2�; t); t > 0; (6.4)

where

L(x; y; D) = �r � (E + g0;3(x; y)r) + E + g1;3(x; y): (6.5)

Recalling the de�nitions from Section 5.2, the functionsg0;3(x; y) and g1;3(x; y) are

chosen to have continuous fourth partial derivatives. We discretize the problem using

a grid of the form

x j = jh; y k = kh; j; k = 0; : : : ; N; h =
2�
N

(6.6)

with N = 16. Figure 6.1 illustrates the accuracy of solutions computed using �nite

di�erences with the Crank-Nicolson method, then using Algorithm 2.2 with two Gaus-

sian quadrature nodes, and then Algorithm 2.2 with two Gaussian quadrature nodes

and one prescribed node. As in the one-dimensional case, Algorithm 2.2 requires

O(M logM) oating-point operations, where M is the number of gridpoints.

6.1.2 Non-Self-Adjoint Operators

While the development of our algorithm relied on the assumption that L(x; D) was

self-adjoint, it can be shown that it works quite well in cases whereL(x; D) is not

self-adjoint. Since the variable-coe�cient �rst-order wave equation can be solved

analytically in one space dimension, we instead present some results from applying

the algorithm to the �rst-order wave equation in two space dimensions,

@u
@t

(x; y; t) + E + g0;3(x; y)
@u
@x

+

E + g1;3(x; y)
@u
@y

+ E � g2;3(x; y)u(x; y; t) = 0 ; (x; y) 2 R; t > 0; (6.7)

134 CHAPTER 6. CONCLUSIONS

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Relative error for varying time steps, 2-D problem

time step

re
la

tiv
e

er
ro

r

Crank-Nicolson
Gauss
Gauss-Radau

Figure 6.1: Estimates of relative error in the approximate solution ~u(x; t) of (6.2),
(6.3), (6.4) at t = 1 computed using �nite di�erencing with Crank-Nicolson (solid
curve), Algorithm 2.2 with Gaussian quadrature (dashed curve), and Algorithm 2.2
with Gauss-Radau quadrature (dashed-dotted curve) withN = 64 grid points and
time steps � t = 2 � j for j = 0; : : : ; 6.

6.1. EXTENSIONS 135

u(x; y; 0) = E + g0;3(x; y); (x; y) 2 R; (6.8)

u(x; y; t) = u(x + 2�; y; t) = u(x; y + 2�; t); t > 0: (6.9)

Figure 6.2 illustrates the performance of Algorithm 2.2 on this problem.

In [23], Goodman, Hou and Tadmor study the stability of the unsmoothed Fourier

method when applied to the problem

@u
@t

(x; t) �
@

@x
(sin(x)u(x; t)) = 0 ; 0 < x < 2�; t > 0; (6.10)

u(x; 0) =
1

p
2�

N=2� 1X

! = � N=2+1

ei!x i! � 3; 0 < x < 2�; (6.11)

u(x; t) = u(x + 2�; t); t > 0: (6.12)

Figure 6.3 compares the Fourier coe�cients obtained using the Fourier method with

those obtained using Gauss-Radau quadrature as in Algorithm 2.4. It is easy to see

that using Algorithm 2.4 avoids the weak instability exhibited by the unsmoothed

Fourier method. As noted in [23], this weak instability can be overcome by using a

su�ciently large number of gridpoints, or by applying �lter ing techniques (see [3]) to

remove high-frequency components that are contaminated byaliasing. Algorithm 2.4,

by computing each Fourier component using an approximationto the solution oper-

ator that is tailored to that component, provides the bene�t of smoothing, without

the loss of resolution associated with �ltering.

While the theory presented and cited in Chapter 2 is not applicable to the non-

self-adjoint case, a plausible explanation can be given as to why Gaussian quadrature

methods can still be employed for such problems. Each component of the solution is

computed by approximating quantities of the form

f (u) = uH exp[� A� t]u; (6.13)

where u is an N -vector A is an N � N matrix that may or may not be symmetric.

136 CHAPTER 6. CONCLUSIONS

10
-2

10
-1

10
0

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Relative error for varying time steps, first-order wave equation

time step

re
la

tiv
e

er
ro

r

Crank-Nicolson
Gauss
Gauss-Radau

Figure 6.2: Estimates of relative error in the approximate solution ~u(x; 1) of (6.7),
(6.8), (6.9) computed using Crank-Nicolson (solid curve),Algorithm 2.2 with Gaus-
sian quadrature (dashed curve) and Algorithm 2.2 with Gauss-Radau quadrature
(dotted-dashed curve) withN = 64 nodes and various time steps.

6.1. EXTENSIONS 137

The approximation ~f (u) of f (u) takes the form

~f (u) = uH

"
JX

j =0

wj e� � j � tA j u

#

= uH PJ (A)u; (6.14)

and satis�es

f (u) � ~f (u) = uH

1X

k=2 J

(� 1)k � tk

k!
Ak

!

u; (6.15)

due to the construction of the left and right Lanczos vectors. In this sense, the

high accuracy of Gaussian quadrature generalizes to the non-self-adjoint case. Each

quantity f (u) can be viewed as an Riemann-Stieltjes integral over a contour in the

complex plane; the use of Gaussian quadrature to evaluate such integrals is discussed

in [39].

It should be noted, however, that instability can still occur if the integrals are

not computed with su�cient accuracy. Unlike the weak instability that occurs in the

Fourier method, the remedy is not to use more gridpoints, butto ensure that the

same components are computed with greater accuracy. This can be accomplished by

choosing a smaller timestep or increasing the number of quadrature nodes, and both

tactics have been successful with (6.10), (6.11) in practice. Figure 6.4 demonstrates

this instability and the e�ectiveness of these remedies by displaying the values of the

solution at t = 5, computed using various combinations of �t and the number of

Gaussian quadrature nodesK .

6.1.3 Higher-Order Operators

Our algorithm does not require the operatorL(x; D) to be �rst- or second-order, so

certainly it is worthwhile to investigate its application to higher-order equations. To

that end, we attempt to solve the time-dependentbeam equation

@u
@t

(x; t) +
@2

@x2

�
E + f 0;3a(x)

@2u
@x2

(x; t)
�

= 0; 0 < x < 2�; t > 0; (6.16)

u(x; 0) = f (x); 0 < x < 2�; (6.17)

138 CHAPTER 6. CONCLUSIONS

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5
Fourier method

x

Im
 u

(x
,1

)

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

2

2.5
Gauss-Radau rule

x

Im
 u

(x
,1

)

Figure 6.3: Fourier coe�cients of the approximate solution~u(x; 5) of (6.10), (6.11),
(6.12) computed using the Fourier method (top graph) and Algorithm 2.4 with Gauss-
Radau quadrature (bottom graph) with N = 64 nodes and time step �t = 1=32.

6.1. EXTENSIONS 139

0 1 2 3 4 5 6 7
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Size of solutions of du/dt=d(sin(x)u)/dx

x

|u
(x

,5
)|

K=2, Dt=1/4
K=2, Dt=1/8
K=3, Dt=1/4

Figure 6.4: Size of approximate solutions of (6.10), (6.11), (6.12) computed using
Algorithm 2.4 with Gauss-Radau quadrature, with various combinations of � t and
the number of Gaussian quadrature nodes, denoted byK .

140 CHAPTER 6. CONCLUSIONS

u(x; t) = u(x + 2�; t); t > 0: (6.18)

Figure 6.5 compares the performance of the following methods applied to this problem:

� Crank-Nicolson with �nite di�erencing,

� Algorithm 2.2, employing Gaussian quadrature with 2 nodes.

In both cases,N = 64 gridpoints are used. The accuracy of Algorithm 2.2 is su-

perior to that of the Crank-Nicolson method with �nite di�er encing, although the

convergence rates are approximately equal for su�ciently small time steps. Note,

however, that for larger timesteps, Algorithm 2.2 exhibitssuperlinear convergence in

time, while Crank-Nicolson shows no sign of convergence until � t is su�ciently small.

6.1.4 Other Boundary Conditions

Algorithm 2.4 computes the sine and cosine transforms of thesolution, rather than

the standard Fourier transform, in order to avoid complex arithmetic. From there, it

is a simple matter to use this algorithm to solve problems with homogeneous Dirichlet

or Neumann boundary conditions, as well as mixed boundary conditions.

For a problem de�ned on a more complicated domainG, if a set of linearly inde-

pendent functions' 1, : : :, ' N is known where, for eachj , ' j satis�es the boundary

conditions, then Algorithm 2.4 can be adapted to use these functions instead of simple

waves. LetV = span f ' 1; : : : ; ' N g. For optimal performance, the setf ' gN
j =1 should

satisfy the following properties:

� Let f be a function de�ned on G. It should be easy to approximatef by a

linear combination

f � f N =
NX

j =1

cj ' j (6.19)

and obtain the coe�cients cj , j = 1; : : : ; N , from the values off at N points

of G. Conversely, given the coe�cientscj , j = 1; : : : ; N , it should be easy to

obtain the values off N at N points of G.

6.1. EXTENSIONS 141

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

Relative error for various time steps, beam equation

time step

re
la

tiv
e

er
ro

r

FD/Crank-Nicolson
Krylov/Gauss

Figure 6.5: Estimates of relative error in the approximate solution ~u(x; 1) of the time-
dependent beam equation (6.16), (6.17), (6.18) computed using Crank-Nicolson with
�nite di�erencing (solid curve), and Gaussian quadrature (dotted-dashed curve) with
N = 64 nodes and time steps �t = 2 � j , for j = 1; : : : ; 7.

142 CHAPTER 6. CONCLUSIONS

� It should be easy to express partial derivatives of each' j in terms of functions

from the set f ' j gN
j =1 .

� It is preferable, although not necessary, that the functions f ' j gN
j =1 should be

orthogonal with respect to the inner product

hf; g i =
Z

G
fg dV: (6.20)

wheredV is the volume element ofG.

Given these conditions, it is easy to see that one could use Algorithms 2.2 and 2.4 with

basis functions such as Chebyshev or Legendre polynomials,or piecewise continuous

polynomials. Future work will explore the use of such basis functions. It should be

noted that this exibility can also be exploited to allow these algorithms to be used

for solving time-dependent systems of equations.

Problems with inhomogeneous boundary conditions can be handled in a manner

similar to that described in [43]. Problems with forcing terms can be addressed by

applying Duhamel's principle.

6.1.5 Time-dependent Coe�cients

Consider a problem of the form

@u
@t

(x; t) + L(x; t; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (6.21)

u(x; 0) = f (x); 0 < x < 2�; (6.22)

u(x; t) = u(x + 2�; t); t > 0; (6.23)

where the operatorL(x; t; D) has the form

L(x; t; D) =
mX

� =0

a� (x; t)D � : (6.24)

6.1. EXTENSIONS 143

Algorithms 2.2 and 2.4 can be applied to problems of this form. Between time steps,

the coe�cients of L(x; t; D) can be re-evaluated at the current time in order to obtain

an approximate solution. In this case, it may be worthwhile to employ the algorithms

developed in Chapter 4 for updating Jacobi matrices, since the quadrature rules of the

current time step can be viewed as perturbations of the rulesfrom the previous time

step. A drawback to this approach is that it may be necessary to use a signi�cantly

smaller time step than in the case where the coe�cients ofL(x; t; D) are independent

of time.

6.1.6 Quasilinear Problems

The discussion of time-dependent coe�cients applies to quasilinear problems as well;

we can simply substitute the computed solution and evaluatethe coe�cients after

each time step. As an example, we attempt to solve Burger's equation

@u
@t

(x; t) + u(x; t)
@u
@x

(x; t) �
@2u
@x2

(x; t) = 0 ; 0 < x < 2�; t > 0; (6.25)

with initial condition

u(x; 0) = E + f 0;3(x); 0 < x < 2�; (6.26)

and boundary conditions

u(0; t) = u(2�; t) = 0 ; t > 0: (6.27)

Figure 6.6 compares the performance of the following methods applied to this problem:

� Crank-Nicolson with �nite di�erencing,

� the Fourier method with MATLAB's ode23s sti� solver, and

� Algorithm 2.2, employing Gaussian quadrature with 2 nodes.

In all cases,N = 64 gridpoints are used. The convergence of Algorithm 2.2 iscom-

parable to that of the Fourier the other two methods, and slightly more accurate for

144 CHAPTER 6. CONCLUSIONS

each time step used.

6.2 Representations of Solutions

Consider the problem (1.1), (1.2), (1.4). As discussed in Chapter 1, the solution

u(x; t) of this problem has a simple representation in the case where the operator

L(x; D) has constant coe�cients, given in (1.9). If the initial data f (x) satis�es

f̂ (!) = 0 for j! j > M for someM , then we obtain a closed-form solution that can

easily be evaluated at any point (x; t).

If L(x; D) has variable coe�cients, then no such representation is available since we

do not know the eigenvalues and eigenfunctions ofL(x; D). Therefore, an approximate

solution computed using a standard time-stepping method only provides information

about the solution at each timetn = n� t, where n is a positive integer and � t is

the chosen time step. As a result, interpolation is requiredto obtain a representation

that can be evaluated e�ciently at an arbitrary point (x; t).

On the other hand, using low-order Gaussian quadrature rules to compute the

Fourier components of the approximate solution does provide such a representation,

since the time step is not used to construct the quadrature rules. As such, the

approximate solution ~u(x; t) has the representation

~u(x; t) =
1

p
2�

N=2� 1X

! = � N=2+1

ei!x

"
MX

j =1

wj;! e� � j;! t

#

; (6.28)

where the � j;! and wj;! , j = 1; : : : ; M , j! j < N= 2, are the nodes and weights, re-

spectively, of the various quadratures rules employed by Algorithm 2.2 or 2.4. These

nodes and weights depend on the initial dataf (x) and the operatorL(x; D). Unlike

the representation (1.9) for constant-coe�cient problems, the formula (6.28) is only

valid for t within some interval, rather than for all time t, since the accuracy of the

Gaussian quadrature rules deteriorates ast increases. The size of this interval can be

estimated using the procedures described in Chapter 4 for timestep selection.

One bene�t of this representation of ~u(x; t) is that it is possible to use automatic

6.2. REPRESENTATIONS OF SOLUTIONS 145

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

Relative error for varying time steps, Burger's equation

time step

re
la

tiv
e

er
ro

r

Crank-Nicolson
Fourier
Gauss

Figure 6.6: Estimates of relative error in the approximate solution ~u(x; 1) of Burger's
equation (6.25), (6.26), (6.27) computed using Crank-Nicolson with �nite di�erenc-
ing (solid curve), the Fourier method with ode23s (dashed curve), and Gaussian
quadrature (dotted-dashed curve) withN = 64 nodes and various time steps.

146 CHAPTER 6. CONCLUSIONS

di�erentiation to obtain a similar representation of @~u=@t, that can also be evaluated

at any point (x; t). We now discuss some ways in which this fact can be exploited.

6.2.1 A Deferred Correction Algorithm

Consider a boundary-value problem of the form

L(x; D)u(x) = f (x); 0 < x < 2�; (6.29)

with boundary conditions (1.4), whereL(x; D) is an m-th order di�erential operator

of the form

L(x; D) =
mX

� =0

a� (x)D � ; D =
@

@x
: (6.30)

In the process of solving such a problem numerically, one canconstruct a discretization
~L of L(x; D) and a corresponding approximation~S to the exact solution operator

S(x; D) and carry out an iteration like the following in order to obtain an approximate

solution ~u(x):

r (0) = f

~u = 0

for k = 0; 1; : : :

~u(k) = ~Sr (k)

~u = ~u + ~u(k)

r (k+1) = f � ~L ~u(k)

Now, consider a problem of the form (1.1), (1.2) with the sameboundary conditions

(1.4). As in the case of the boundary value problem (6.29), wecan discretizeL(x; D)

to obtain ~L, and construct an approximate solution operator~S(t) that can be used

to obtain an approximation ~u(0) (x; t) = ~S(t)f (x) to the solution u(x; t) for somet. It

is not as straightforward, however, to improve on ~u(0) (x; t) using an iteration similar

to (6.2.1). In this section we will present an approach to deferred correction that can

be applied to problems of the form (1.1), (1.2) with various boundary conditions.

First, we will discuss the di�culties in constructing an iteration of the form (6.2.1)

for initial-boundary value problems when using standard time-stepping methods, and

6.2. REPRESENTATIONS OF SOLUTIONS 147

show how the algorithms developed in Chapter 2 can be used to overcome these

di�culties. Next, we will see how Duhamel's principle can beused to construct an

iteration for deferred correction. Finally, we will present numerical results obtained

using our iteration.

Computing Residuals

In solving the boundary-value problem (6.29) using deferred correction, a residual

r (x) = Lu(x) � f (x) is computed whereu(x) is the approximate solution to (6.29).

If we wish to solve (1.1), (1.2) using a similar procedure, wewill need to answer the

following questions:

1. What is an appropriate method of measuring the error in theinitial approxi-

mation ~u(0) (x; t) to the solution u(x; t)?

2. How can this error measurement be used to improve the approximation?

We now attempt to answer these two questions.

A natural choice of error estimate is an indication of how well the computed

solution satis�es the di�erential equation,

R~u(x; t) =
@~u
@t

+ L(x; D)~u(x; t): (6.31)

However, it is not necessarily a simple matter to compute this residual accurately,

as we will now illustrate with an example. Suppose that we obtain our approximate

solution using a �nite-di�erence method in conjunction with a semi-implicit time-

stepping scheme, such as the Crank-Nicolson method,

�
I +

� t
2

~L
�

~u(x; � t) =
�

I �
� t
2

~L
�

f (x); (6.32)

where ~L is a discretization ofL(x; D). In computing R~u(x; � t), it is clear that we

will introduce discretization error in both space and time;in fact, to obtain any

approximate residual we will need to compute approximate solutions at other times

besides � t. Unfortunately, in order for an iteration of the form (6.2.1) to be e�ective,

148 CHAPTER 6. CONCLUSIONS

we need the residual to be measured as accurately as possible. At a minimum, it is

desirable to eliminate any temporal discretization error.Much work has been done

to develop deferred correction methods by working around this di�culty in various

ways, see for instance [33]. Our goal is to develop a deferredcorrection procedure

that is, conceptually, more straightforward.

Using Algorithms 2.1 and 2.2, we will see that it is possible to eliminate temporal

discretization error. From these algorithms, we see that for each wave number! , the

component ~u(!; t) has the form

~u(!; t) =
2KX

j =1

cj exp[� � j t]; (6.33)

where the constantscj are determined by the weights of the quadrature rules used

to compute ~u(!; t). It follows that we not only have obtained ~u(x; t), but also a

representation of ~u(x; t) that can be evaluated at any time t. Furthermore, it is

trivial to obtain @~u=@t, for

@~u(!; t)
@t

=
2KX

j =1

cj � j exp[� � j t]: (6.34)

Thus the residualR~u(x; t) can be evaluated at any timet without temporal discretiza-

tion error.

Duhamel's Principle and Backward Error Analysis

Now that we have obtained an accurate residual, we will examine how it can be

exploited in this section by employing backward error analysis to determine what

problem our approximate solution has solved. We �rst compute our initial approxi-

mation ~u(0) (x; t) and then compute

R~u(0) (x; t) =
@~u(0)

@t
+ L(x; D)~u(0) (x; t): (6.35)

6.2. REPRESENTATIONS OF SOLUTIONS 149

Then ~u(0) (x; t) is a solution of the inhomogeneous problem

@u
@t

(x; t) + L(x; D)u(x; t) = R~u(0) (x; t); 0 < x < 2�; t > 0; (6.36)

u(x; 0) = f (x); 0 < x < 2�; (6.37)

with boundary conditions (1.4). By Duhamel's principle, this problem has the solution

u(x; t) = exp[� L(x; D)t]f (x) +
Z t

0
exp[� L(x; D)(t � �)]R~u(0) (x; �) d�: (6.38)

However, the �rst term in (6.38) is the exact solution to our original problem (1.1),

(1.2). Therefore, if we can compute the second term with su�cient accuracy, we can

improve our approximate solution ~u(0) (x; t) by computing

~u(1) (x; t) = ~u(0) (x; t) �
MX

k=1

exp[� L(x; D)(t � tk)]R~u(0) (x; t k)wk ; (6.39)

where the nodestk and weightswk are determined by anM -point Gaussian quadrature

rule, and exp[� L(x; D)(t � tk)]R~u(0) (x; t k) is computed using Algorithms 2.1 and 2.2.

We now summarize the entire procedure for making a single correction.

Algorithm 6.1 Given a self-adjoint di�erential operator L(x; D), initial data f (x),

and a time t f inal , the following algorithm computes an initial approximation ~u(0) (x; t)

to the solution u(x; t) of (1.1), (1.2), (1.4) and an improved approximation ~u(1) (x; t).

Both approximations are evaluated at timet f inal .

Compute ~u(0) (x; t f inal) using Algorithm 2.2, saving

all nodest (�)
j and weightsw(�)

j of quadrature rules used

to compute each Fourier component ^u(�; t) of ~u(�; t)

Compute nodest j and weightswj , j = 1; : : : ; M , for Gaussian

quadrature on the interval [0; t f inal]

(for details see [41])

e(x) = 0

150 CHAPTER 6. CONCLUSIONS

for j = 1; : : : ; M

Compute v1(x) = @~u(0) =@t, evaluated at time t j

Compute v2(x) = L(x; D)~u(0) (x; t j)

Set R~u(0) (x; t j) = v1(x) � v2(x)

Compute an approximationRj (x) to S(x; D ; t f inal � t j)R~u(0) (x; t j)

e(x) = e(x) + wj Rj (x)

end

~u(1) (x; t f inal) = ~u(0) (x; t f inal) � e(x)

It is possible to use a similar approach to correct ~u(1) (x; t), but in this case it is

necessary to save the quadrature rules used to compute each term of e(x). Therefore,

computing the residualR~u(1) (x; t) is much more expensive. It is more e�cient to use

more quadrature nodes for a single correction, as opposed tousing fewer nodes for

multiple corrections.

Numerical Results

Now we present the results of applying Algorithm 6.1 to the problems featured in

Sections 5.2 and 5.3. Figure 6.7 illustrates the e�ect of using a single correction with

2 nodes on Algorithm 2.2. In both cases, using a Gaussian ruleor a Gauss-Radau rule

to compute Fourier components of the solution, the correction provides signi�cantly

more accuracy.

Earlier it was shown that in cases where the coe�cients of theoperator L(x; D)

are not smooth, or if the initial data f (x) is not smooth, that computed solutions were

less accurate. We now test whether correction can provide a remedy. Figures 5.4 and

6.8 show how correction can help in the case where the coe�cients of L(x; D) are not

as smooth; clearly correction is very helpful. Figures 5.5 and 6.9 show that correction

provides marked improvement in the case of coe�cients with higher amplitude; the

extremely poor accuracy for higher timesteps has been alleviated. Finally, Figures 5.6

and 6.10 illustrate the usefulness of correction with initial data of varying smoothness;

again the accuracy is signi�cantly improved.

6.2. REPRESENTATIONS OF SOLUTIONS 151

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence with and without correction (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

without
with

10
-2

10
-1

10
0

10
-10

10
-5

10
0

Convergence with and without correction (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

without
with

Figure 6.7: Estimates of relative error in the approximate solution ~u(x; t) of problem
(5.11), (5.12), (5.13) att = 1 computed with correction, using Algorithm 6.1 (dashed
curve), and without correction, using Algorithm 2.2 (solidcurve). In all casesN = 64
grid points are used, with time steps �t = 2 � j , j = 0; : : : ; 6.

152 CHAPTER 6. CONCLUSIONS

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for operators of varied smoothness (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

10
-2

10
-1

10
0

10
-10

10
-5

10
0

Convergence for operators of varied smoothness (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

Figure 6.8: Estimates of relative error in the approximate solution ~u(x; t) of (5.14),
(5.15), (5.16) at t = 1. Solutions are computed using Algorithm 6.1 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

6.2. REPRESENTATIONS OF SOLUTIONS 153

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

Convergence for operators of varied amplitude (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

1x
2x
4x

10
-2

10
-1

10
0

10
-10

10
-5

10
0

Convergence for operators of varied amplitude (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

1x
2x
4x

Figure 6.9: Estimates of relative error in the approximate solution ~u(x; t) of (5.17),
(5.18), (5.19) at t = 1. Solutions are computed using Algorithm 6.1 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

154 CHAPTER 6. CONCLUSIONS

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

Convergence for initial data of varied smoothness (Gaussian rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

10
-2

10
-1

10
0

10
-10

10
-5

10
0

10
5

Convergence for initial data of varied smoothness (Gauss-Radau rule)

time step

re
la

tiv
e

er
ro

r

C4

C3

C2

Figure 6.10: Estimates of relative error in the approximatesolution ~u(x; t) of (5.20),
(5.21), (5.22) at t = 1. Solutions are computed using Algorithm 6.1 with 2 Gaussian
quadrature nodes, with various time steps andN = 64 grid points.

6.2. REPRESENTATIONS OF SOLUTIONS 155

6.2.2 Weak Solutions of Wave Equations

Let L(x; D) be an m-th order self-adjoint di�erential operator of the form (1.3). We

consider a problem of the form

@2u
@t2

(x; t) + L3(x; D)u(x; t) = 0 ; 0 < x < 2�; t > 0; (6.40)

with initial conditions

u(x; 0) = E + f 0;3(x);
@u
@t

(x; 0) = E + f 1;3(x); 0 < x < 2�; (6.41)

and periodic boundary conditions. In particular, ifL(x; D) is a second-order operator,

then this problem is a variable-coe�cient form of the telegraph or wave equation.

In order to solve such a problem numerically, one of three approaches can be taken:

� Approximate eigenfunctionsf M k(x)g1
k=1 of L(x; D) are computed, and the so-

lution is represented using an eigenfunction expansion

u(x; t) =
1X

k=1

uk(t)M k(x); uk(t) = hu(�; t); M k i : (6.42)

Given the eigenvaluesf � kg1
k=1 of L(x; D), the coe�cient functions uk(t) can

easily be determined, as they each satisfy an ODE

d2uk

dt2
= � kuk(t); t > 0; (6.43)

with initial conditions

uk(0) = f k ; f k = hf; M k i ; k = 1; : : : (6.44)

u0
k(0) = gk ; gk = hg; Mk i ; k = 1; : : : (6.45)

For eachk, this problem has the solution (see [43])

uk(t) = f k cos[
p

� k t] +
1

p
� k

gk sin[
p

� k t]: (6.46)

156 CHAPTER 6. CONCLUSIONS

Of course, one must obtain the eigenvalues and eigenfunctions of L(x; D) in

order to use this approach; this can be accomplished using methods described

in [34].

� We can introduce a new dependent variable

v(x; t) =
@u
@t

(x; t); (6.47)

which yields the �rst-order system

@
@t

"
u

v

#

=

"
v

L(x; D)u

#

: (6.48)

A number of di�culties arise from this approach (see [32]):

{ Two variables must be computed,

{ The number of grid points must be doubled in both space and time to

obtain the same accuracy as with a �nite di�erence method that solves

the problem directly,

{ Since there are no boundary conditions forv, one must supply extrapola-

tion conditions. This can be done, but it is possible to introduce instabil-

ities (see [27]).

{ If the solution is not properly resolved, then one creates spurious waves

which travel in the wrong direction (see [4]).

� In [32], Kreiss, Petersson, and Ystr•om discuss various �nite-di�erence methods

for solving the wave equation directly without converting it to a �rst-order

system.

We will use an approach developed in [25] that is similar to that of eigenfunction ex-

pansions to develop an algorithm for solving (6.40), (6.41)using Gaussian quadrature

rules, without having to compute eigenvalues and eigenfunctions.

6.2. REPRESENTATIONS OF SOLUTIONS 157

From the determination of the coe�cient functions uk(t) above, it is easy to show

that if L(x; D) is invertible, and if the functions f (x) and g(x), as well as the coe�-

cients ofL(x; D), are all C1 functions, then

u(x; t) = cos[
p

L(x; D)t]f (x) + [L(x; D)]� 1=2 sin[
p

L(x; D)t]g(x): (6.49)

Note that if L(x; D) is not invertible, then its pseudo-inverse can be used instead.

Using this representation of the solution, we can easily compute Fourier components

of an approximate solution using Gaussian quadrature. The only modi�cations we

need to make to Algorithm 2.2 are:

1. We need to apply a variation of Algorithm 2.2 to the initial data f (x), using

the integrand s1(�) = cos(
p

� � t), and also to the initial data g(x), using the

integrand s2(�) = 1p
�

sin(
p

� � t).

2. After each time step, we need to employ the quadrature rules used to com-

pute u(x; t + � t) to obtain @u
@t(x; t + � t), using integrands�

p
� sin(

p
� � t) and

cos(
p

� � t). This technique is analogous to the one used earlier to obtain @u=@t

in order to compute the residual of the approximate solution.

For such problems, it is important to note that the integrands are oscillatory over

the interval of integration, and that the oscillation increases with � t. Therefore, in a

practical implementation in which functions are discretized using anN -point uniform

grid of the form (2.42), it is recommended that the time step �t be chosen so that

N � t � 1. This condition can be relaxed if the coe�cients ofL(x; D) are reasonably

smooth, in which case most of the oscillations of the integrand are damped by the

weight function of the integral. Figure 6.11 provides a comparison of Algorithm 2.2

with the �nite-di�erence scheme

un+1 � 2un + un� 1 +
� t2

2
A

�
un+1 + un� 1

�
= 0; (6.50)

where A is a matrix representing a �nite-di�erence discretization of L(x; D) and

un , for each integern, is a gridfunction denoting the approximate solution ~u(x; t n)

with tn = n� t. Even though no preconditioning is applied toL(x; D) to obtain

158 CHAPTER 6. CONCLUSIONS

these results, Gaussian quadrature methods perform quite well even when � t is large

compared to � x = 2�=N .

Algorithm 2.2 also performs quite well in the case whereL(x; D) has discontinuous

coe�cients, and the initial data f (x) and g(x) are discontinuous. To see this, we apply

these algorithms to the problem

@2u
@t2

� D
�

1
2

H (x � �)Du
�

+
1
2

H (x � �)u; 0 < x < 2�; t > 0; (6.51)

u(x; 0) = E + f 0;0(x); 0 < x < 2�; (6.52)

u(x; t) = u(x + 2�; t); t > 0: (6.53)

Figure 6.12 compares the convergence of Algorithm 2.2 with the �nite-di�erence

method (6.50) for this problem.

6.3 Future Directions

It is the author's opinion that the ideas presented in this thesis have yet to be fully

explored, and that the resulting solution methods and preconditioning techniques can

be improved upon. In this section, we discuss some avenues ofimprovement, as well

as possible applications to other problems that have not yetbeen discussed.

6.3.1 Eigenfunctions of Di�erential Operators

The preconditioning techniques developed in Chapter 3 represent a �rst attempt at

solving the very di�cult problem of smoothing the coe�cient s of variable-coe�cient

operators via similarity transformations. Future work is intended along various di-

rections. One such direction is the construction of more powerful canonical transfor-

mations for use with Egorov's theorem, including transformations that do not arise

from a coordinate transformation of the formy = � (x). Another direction is the gen-

eralization of the � operator described in Chapter 4 to pseudodi�erential operators

with coe�cients of negative order; this is possible using integration by parts.

6.3. FUTURE DIRECTIONS 159

10
-2

10
-1

10
0

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Relative error for varying time steps, second-order wave equation

time step

re
la

tiv
e

er
ro

r

Kreiss, et al.
Gauss
Gauss-Radau

Figure 6.11: Estimates of relative error in the computed solution ~u(x; t) to (6.40),
(6.41), (1.4) at t = 1. Solutions are computed using the �nite di�erence scheme(6.50)
(solid curve), Algorithm 2.2 with Gaussian quadrature (dashed curve) and Algorithm
2.2 with Gauss-Radau quadrature (dotted-dashed curve) with various time steps and
N = 64 grid points. In both instances of Algorithm 2.2,K = 2 Gaussian quadrature
nodes are used.

160 CHAPTER 6. CONCLUSIONS

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Relative error for varying time steps, discontinuous data, hyperbolic problem

time step

re
la

tiv
e

er
ro

r

Kreiss, et al.
Gauss
Gauss-Radau

Figure 6.12: Estimates of relative error in the computed solution ~u(x; t) to (6.51),
(6.52), (6.53) at t = 1. Solutions are computed using the �nite di�erence method
(6.50) (solid curve), Algorithm 2.2 with Gaussian quadrature (dashed curve) and
Algorithm 2.2 with Gauss-Radau quadrature (dotted-dashedcurve) with various time
steps andN = 64 grid points. In both instances of Algorithm 2.2,K = 2 Gaussian
quadrature nodes are used.

6.3. FUTURE DIRECTIONS 161

As we have seen, one application of these preconditioning techniques is that they

can be used to �nd approximate eigenvalues and eigenfunctions of di�erential opera-

tors. It is possible that a modi�cation of the transformations may yield an approxi-

mate diagonalization. Speci�cally, if we represent an operator L(x; D) as a series of

the form

L(x; D) =
mX

� = �1

a� (x)(D + � � I)� ; (6.54)

where each� � is a real nonzero constant, thenD + � � I is nonsingular, and

k(D + � � I)� 1k = � � 1
� : (6.55)

Therefore, we can apply the techniques outlined in Section 3.5 to eliminate variable

coe�cients, and if the remaining variable-coe�cient porti on ofL(x; D) decays in some

sense, then an approximate diagonalization can be achieved. The discussion in Section

3.5 only prescribes how the leading coe�cient of (3.53) is tobe determined. As such,

a subject of future research is the determination of the lower-order coe�cients in

(3.53), and a set of \optimal" shifts that yields an approximate diagonalization using

as few transformations as possible.

Such an approximate diagonalization can be used to e�ciently compute an ap-

proximate solution to boundary-value problems of the formL(x; D)u = f , or initial-

boundary value problems such as (5.27), (5.28). In the latter case, no timestep is re-

quired, thus e�ectively generalizing the Fourier method described in [27] to variable-

coe�cient problems. In practice, such an approximate solution would need to be

corrected, but this can be accomplished using the techniques developed earlier in this

section. Alternatively, the approximate eigenfunctions generated by our precondi-

tioning techniques can be improved using Jacobi rotations.

6.3.2 Inverse Problems

The discussion in Section 4.1 suggests that one can obtain information about the

coe�cients of an unknown di�erential operator L(x; D) given the Jacobi matrices

162 CHAPTER 6. CONCLUSIONS

JK . These matrices can easily be computed with knowledge of themoments

� j = hu; L(x; D) j vi ; (6.56)

where the functionsu(x) and v(x) de�ne a measure such thatmuj is a valid Riemann-

Stieltjes integral. Since this measure is constructed fromthe eigenvalues and eigen-

functions of L(x; D), it is useful to investigate whether Gaussian quadrature rules

can be helpful in solving inverse eigenvalue problems for Sturm-Liouville operators.

Alternatively, [24] describes a numerically stable algorithm for reconstructing Jacobi

matrices directly from the nodes and weights of the corresponding Gaussian quadra-

ture rule.

6.4 Summary

By reconsidering the role of numerical quadrature in Galerkin methods, we have suc-

ceeded in developing an e�cient numerical method for solving the problem (1.1),

(1.2), (1.4) that provides a simple representation of the computed solution as a func-

tion ~u(x; t). As a result, some of the same bene�ts of spectral methods applied to

constant-coe�cient problems can be made available to variable-coe�cient problems.

In addition, we have managed to apply the ideas of Fe�erman and Egorov to

develop practical similarity transformations of di�erential operators to obtain new

operators with smoother coe�cients, along with good approximations of eigenvalues

and eigenfunctions of these operators.

With future research along the directions established in this thesis, it is hopeful

that more e�cient solution methods for time-dependent variable-coe�cient problems,

as well as a deeper understanding of the eigensystems of variable-coe�cient di�erential

operators, can be realized.

Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques and Tools

(1988) Addison-Wesley.

[2] A. Bj•orck, \Solving Linear Least Squares Problems by Gram-Schmidt Orthogo-

nalization", BIT 7 (1967), p. 1-21.

[3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd. Ed. (2001) Dover.

[4] G. Browning, H.-O. Kreiss, J. Oliger, \Mesh Re�nement", Math. Comp. 27

(1973), p. 29-39.

[5] D. Calvetti, G. H. Golub, W. B. Gragg, L. Reichel, \Computation of Gauss-

Kronrod quadrature rules", Math. Comp. 69 (2000), p. 1035-1052.

[6] S. J. Cox, \Recovering the passive properties of tapereddendrites from single

and dual potential recordings", in preparation.

[7] G. Dahlquist, S. C. Eisenstat and G. H. Golub, \Bounds forthe error of linear

systems of equations using the theory of moments",J. Math. Anal. Appl. 37

(1972), p. 151-166.

[8] P. Davis, P. Rabinowitz,Methods of numerical integration, 2nd Ed. (1984) Aca-

demic Press.

[9] J. V. Egorov, \Canonical Transformations and Pseudodi�erential Operators",

Trans. Moscow Math. Soc.24 (1975), p. 1-28.

163

164 BIBLIOGRAPHY

[10] C. Fe�erman \The Uncertainty Principle" Bull. Amer. Math. Soc. 9 (1983), p.

129-206.

[11] W. Gautschi, \Construction of Gauss-Christo�el quadrature formulas", Math.

Comp. 22 (1968), p. 251-270.

[12] W. Gautschi, \Orthogonal polynomials: applications and computation", Acta

Numerica 5 (1996), p. 45-120.

[13] W. Gautschi, \The interplay between classical analysis and (numerical) linear

algebra{A tribute to Gene H. Golub", Electron. Trans. Numer. Anal. 13 (2002),

p. 119-147.

[14] G. H. Golub, private communication.

[15] G. H. Golub, \Some modi�ed matrix eigenvalue problems", SIAM Review 15

(1973) p. 318-334.

[16] G. H. Golub, \Bounds for matrix moments", Rocky Mnt. J. of Math. 4 (1974),

p. 207-211.

[17] G. H. Golub, M. H. Gutknecht, \Modi�ed Moments for Inde� nite Weight Func-

tions", Numer. Math. 57 (1989), p. 607-624.

[18] G. H. Golub, J. Kautsky, and S. Elhay, \Jacobi matrices for sums of weight

functions", BIT 32, p. 143-166.

[19] G. H. Golub, C. Meurant \Matrices, Moments and Quadrature", Stanford Uni-

versity Technical Report SCCM-93-07, 1993

[20] G. H. Golub, R. Underwood, J. H. Wilkinson, \The LanczosAlgorithm for the

Symmetric Ax = �Bx Problem", Report STAN-CS-72-270, Department of Com-

puter Science, Stanford University, Stanford, California, 1972.

[21] G. H. Golub, C. F. van Loan,Matrix Computations, 3rd Ed. (1996) Johns Hop-

kins University Press.

BIBLIOGRAPHY 165

[22] G. H. Golub, J. Welsch, \Calculation of Gauss Quadrature Rules",Math. Comp.

23 (1969), p. 221-230.

[23] J. Goodman, T. Hou, E. Tadmor, \On the stability of the unsmoothed Fourier

method for hyperbolic equations",Numer. Math. 67 (1994), p. 93-129.

[24] W. B. Gragg, W. J. Harrod, \The Numerically Stable Reconstruction of Jacobi

Matrices from Spectral Data", Numer. Math. 44 (1984), p. 317-335.

[25] P. Guidotti, private communication.

[26] P. Guidotti, K. Solna, \1D analysis of wave propagationin inhomogeneous and

random media", in preparation.

[27] B. Gustafsson, H.-O. Kreiss, J. OligerTime-Dependent Problems and Di�erence

MethodsNew York: Wiley, 1995

[28] M. Hochbruck, C. Lubich, \On Krylov Subspace Approximations to the Matrix

Exponential Operator", SIAM J. Numer. Anal. 34 (1996), p. 1911-1925.

[29] L. H•ormander, \Pseudo-di�erential operators", Comm. Pure Appl. Math. 18

(1965), p. 501-517.

[30] C. Johnson,Numerical solutions of partial di�erential equations by the �nite

element method, Cambridge University Press, 1987.

[31] J. J. Kohn, L. Nirenberg, \An Algebra of Pseudo-Di�erential Operators", Comm.

Pure Appl. Math. 18 (1965), p. 269-305.

[32] H.-O. Kreiss, N. A. Petersson, J. Ystr•om, \Di�erence Approximations for the

Second Order Wave Equation",SIAM J. Numer. Anal. 40 (2002), p. 1940-1967.

[33] W. Kress, B. Gustafsson, \Deferred Correction Methodsfor Initial Boundary

Value Problems", Journal of Scienti�c Computing 17 (2002), p. 241-251.

[34] O. E. Livne, \Multiscale Eigenbasis Algorithms", Ph.D. Thesis, Weizmann In-

stitute of Science, Rehovot, 2000.

166 BIBLIOGRAPHY

[35] C. C. Paige, \Practical Use of the Symmetric Lanczos Process with Reorthogo-

nalization", BIT 10 (1970), p. 183-95.

[36] B. N. Parlett, D. S. Scott, \The Lanczos Algorithm with Selective Orthogonal-

ization", Math. Comp. 33 (1979), p. 217-38.

[37] J. R. Rice, \Experiments on Gram-Schmidt Orthogonalization", Math. Comp.

20, p. 325-28.

[38] R. A. Sack, A. F. Donovan \An Algorithm for Gaussian Quadrature given Mod-

i�ed Moments", Numer. Math. 18 (1971/72), 465-478.

[39] P. E. Saylor, D. C. Smolarski, \Why Gaussian quadraturein the complex

plane?", Numerical Algorithms 26 (2001), p. 251-280.

[40] H. Simon, \Analysis of the Symmetric Lanczos Algorithmwith Reorthogonal-

ization Methods", Lin. Alg. and Its Applic. 61 (1984), p. 101-132.

[41] J. Stoer, R. Burlisch, Introduction to Numerical Analysis, 2nd Ed. (1983)

Springer-Verlag.

[42] G. Szego, \Orthogonal Polynomials", 3rd. Ed. (1974)Amer. Math. Soc.

[43] E. Zauderer,Partial Di�erential Equations of Applied Mathematics New York:

Wiley, 1989

