Surfaces of Revolution in Hyperbolic 3-Space

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

Department of Mathematics Colloquium, April 26, 2013
Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
The Illustration of the Limit of Surfaces of Revolution with $H = c$ in $\mathbb{H}^3(-c^2)$ as $c \to 0$
Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$

Outline

1. Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
2. Parametric Surfaces in Hyperbolic 3-Space
3. Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
4. The Illustration of the Limit of Surfaces of Revolution with $H = c$ in $\mathbb{H}^3(-c^2)$ as $c \to 0$
5. Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$
Hyperbolic 3-Space $\mathbb{H}^3(-c^2)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric
 \[ds^2 = -(dx^0)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2. \]

- Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by
 \[-(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = -\frac{1}{c^2}. \]

- $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.
Hyperbolic 3-Space $\mathbb{H}^3(-c^2)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric

$$ds^2 = -(dx^0)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2.$$

- Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by

$$-(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = -\frac{1}{c^2}.$$

- $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.

Hyperbolic 3-Space $\mathbb{H}^3(-c^2)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric

$$ds^2 = -(dx^0)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2.$$

- Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by

$$-(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = -\frac{1}{c^2}.$$

- $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.
Pseudospherical Model

- On the chart

\[U = \{(x^0, x^1, x^2, x^3) \in \mathbb{H}^3(-c^2) : x^0 + x^1 > 0\} \]

define

\[t = -\frac{1}{c} \log c(x^0 + x^1), \]

\[x = \frac{x^2}{c(x^0 + x^1)}, \]

\[y = \frac{x^3}{c(x^0 + x^1)}. \]

\[ds^2 = (dt)^2 + e^{-2ct} \left\{ (dx)^2 + (dy)^2 \right\} \]
Pseudospherical Model

- On the chart

\[U = \left\{ (x^0, x^1, x^2, x^3) \in \mathbb{H}^3(-c^2) : x^0 + x^1 > 0 \right\} \]

define

\[t = -\frac{1}{c} \log c(x^0 + x^1), \]

\[x = \frac{x^2}{c(x^0 + x^1)}, \]

\[y = \frac{x^3}{c(x^0 + x^1)}. \]

- \[ds^2 = (dt)^2 + e^{-2ct} \left\{ (dx)^2 + (dy)^2 \right\} \]
\[\mathbb{R}^3 \text{ with coordinates } t, x, y \text{ and the metric} \]

\[g_c = (dt)^2 + e^{-2ct} \left\{ (dx)^2 + (dy)^2 \right\} \]

is called the \textit{pseudospherical model} of hyperbolic 3-space.

- The pseudospherical model is a local chart of \(\mathbb{H}^3(-c^2) \), so it is not regarded as one of the standard models of hyperbolic 3-space.

- As \(c \to 0 \), \((\mathbb{R}^3, g_c) \) flattens out to Euclidean 3-space \(\mathbb{E}^3 \).
Pseudospherical Model

Continued

- \(\mathbb{R}^3 \) with coordinates \(t, x, y \) and the metric

\[
g_c = (dt)^2 + e^{-2ct} \left\{ (dx)^2 + (dy)^2 \right\}
\]

is called the \textit{pseudospherical model} of hyperbolic 3-space.

- The pseudospherical model is a local chart of \(\mathbb{H}^3(-c^2) \), so it is not regarded as one of the standard models of hyperbolic 3-space.

- As \(c \to 0 \), \((\mathbb{R}^3, g_c) \) flattens out to Euclidean 3-space \(\mathbb{E}^3 \).
The pseudospherical model is a local chart of $\mathbb{H}^3(-c^2)$, so it is not regarded as one of the standard models of hyperbolic 3-space.

As $c \to 0$, (\mathbb{R}^3, g_c) flattens out to Euclidean 3-space \mathbb{E}^3.

\mathbb{R}^3 with coordinates t, x, y and the metric

$$g_c = (dt)^2 + e^{-2ct} \{(dx)^2 + (dy)^2\}$$

is called the pseudospherical model of hyperbolic 3-space.
Pseudospherical Model

Continued

- (\mathbb{R}^3, g_c) is isometric to a solvable Lie group G_c with a left-invariant metric

$$G_c = \left\{ \begin{pmatrix} 1 & 0 & 0 & t \\ 0 & e^{ct} & 0 & x \\ 0 & 0 & e^{ct} & y \\ 0 & 0 & 0 & 1 \end{pmatrix} : (t, x, y) \in \mathbb{R}^3 \right\}.$$

- From here on, we will denote (\mathbb{R}^3, g_c) simply by $\mathbb{H}^3(-c^2)$.

Pseudospherical Model
Continued

- \((\mathbb{R}^3, g_c)\) is isometric to a solvable Lie group \(G_c\) with a left-invariant metric

\[
G_c = \left\{ \begin{pmatrix}
1 & 0 & 0 & t \\
0 & e^{ct} & 0 & x \\
0 & 0 & e^{ct} & y \\
0 & 0 & 0 & 1
\end{pmatrix} : (t, x, y) \in \mathbb{R}^3 \right\}.
\]

- From here on, we will denote \((\mathbb{R}^3, g_c)\) simply by \(\mathbb{H}^3(-c^2)\).
Pseudospherical Model
Continued

- (\mathbb{R}^3, g_c) is isometric to a solvable Lie group G_c with a left-invariant metric
 \[
 G_c = \left\{ \begin{pmatrix}
 1 & 0 & 0 & t \\
 0 & e^{ct} & 0 & x \\
 0 & 0 & e^{ct} & y \\
 0 & 0 & 0 & 1
 \end{pmatrix} : (t, x, y) \in \mathbb{R}^3 \right\}.
 \]

- From here on, we will denote (\mathbb{R}^3, g_c) simply by $\mathbb{H}^3(-c^2)$.

Surfaces of Revolution
Lawson Correspondence

- There is an interesting correspondence, called *Lawson correspondence*, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., *Complete minimal surfaces in S*³, *Ann. of Math.* 92, 335-374 (1970)

- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.

- There is a one-to-one correspondence between surfaces of constant mean curvature \(H_h \) in \(\mathbb{H}^3(−c^2) \) and surfaces of constant mean curvature \(H_e = ±\sqrt{H_h^2 − c^2} \) in \(\mathbb{E}^3 \).
Lawson Correspondence

- There is an interesting correspondence, called *Lawson correspondence*, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., *Complete minimal surfaces in S^3*, Ann. of Math. 92, 335-374 (1970)

- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.

- There is a one-to-one correspondence between surfaces of constant mean curvature H_h in $\mathbb{H}^3(-c^2)$ and surfaces of constant mean curvature $H_e = \pm \sqrt{H_h^2 - c^2}$ in \mathbb{E}^3.

Lawson Correspondence
Lawson Correspondence

- There is an interesting correspondence, called *Lawson correspondence*, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., *Complete minimal surfaces in S^3*, Ann. of Math. 92, 335-374 (1970)

- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.

- There is a one-to-one correspondence between surfaces of constant mean curvature H_h in $\mathbb{H}^3(-c^2)$ and surfaces of constant mean curvature $H_e = \pm \sqrt{H_h^2 - c^2}$ in \mathbb{E}^3.
Lawson Correspondence
Continued

- In particular, surfaces of constant mean curvature $H = \pm c$ in $\mathbb{H}^3(-c^2)$ are cousins of minimal surfaces in \mathbb{E}^3.

- There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, *Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms*, Ann. Global Anal. Geom. 8, 217-226 (1990)

In particular, surfaces of constant mean curvature \(H = \pm c \) in \(\mathbb{H}^3(-c^2) \) are cousins of minimal surfaces in \(\mathbb{H}^3 \).

There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, *Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms*, Ann. Global Anal. Geom. 8, 217-226 (1990)

Surfaces of constant mean curvature $H = c$ in $\mathbb{H}^3(-c^2)$ can be constructed with a holomorphic and a meromorphic data using Bryant’s representation formula, analogously to Weierstraß representation formula for minimal surfaces in \mathbb{E}^3.

However, it is not suitable for constructing surface of revolution with constant mean curvature $H = c$ in $\mathbb{H}^3(-c^2)$.
Surfaces of constant mean curvature $H = c$ in $\mathbb{H}^3(-c^2)$ can be constructed with a holomorphic and a meromorphic data using Bryant's representation formula, analogously to Weierstraß representation formula for minimal surfaces in \mathbb{E}^3.

However, it is not suitable for constructing surface of revolution with constant mean curvature $H = c$ in $\mathbb{H}^3(-c^2)$.
Conformal Parametric Surfaces in $\mathbb{H}^3(-c^2)$

Definition

A parametric surface $\varphi : M \rightarrow \mathbb{H}^3(-c^2)$ is said to be *conformal* if

$$\langle \varphi_u, \varphi_v \rangle = 0, |\varphi_u| = |\varphi_v| = e^{\omega/2},$$

where (u, v) is a local coordinate system in M and $\omega : M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$ds^2_{\varphi} = e^{\omega} \left\{ (du)^2 + (dv)^2 \right\}.$$
Conformal Parametric Surfaces in $\mathbb{H}^3(-c^2)$

Definition

A parametric surface $\varphi : M \rightarrow \mathbb{H}^3(-c^2)$ is said to be *conformal* if

$$\langle \varphi_u, \varphi_v \rangle = 0, \quad |\varphi_u| = |\varphi_v| = e^{\omega/2},$$

where (u, v) is a local coordinate system in M and $\omega : M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$ds^2_{\varphi} = e^\omega \{(du)^2 + (dv)^2\}.$$
Cross Product in $T_p \mathbb{H}^3(-c^2)$

- $\mathbb{H}^3(-c^2)$ is not a vector space but each tangent space $T_p \mathbb{H}^3(-c^2)$ is, and we can consider cross product on each $T_p \mathbb{H}^3(-c^2)$.

- For $v = v_1 \left(\frac{\partial}{\partial t} \right)_p + v_2 \left(\frac{\partial}{\partial x} \right)_p + v_3 \left(\frac{\partial}{\partial y} \right)_p$,
 $w = w_1 \left(\frac{\partial}{\partial t} \right)_p + w_2 \left(\frac{\partial}{\partial x} \right)_p + w_3 \left(\frac{\partial}{\partial y} \right)_p \in T_p \mathbb{H}^3(-c^2)$, define
Cross Product in $T_p\mathbb{H}^3(-c^3)$

- $\mathbb{H}^3(-c^2)$ is not a vector space but each tangent space $T_p\mathbb{H}^3(-c^2)$ is, and we can consider cross product on each $T_p\mathbb{H}^3(-c^2)$.

- For $\mathbf{v} = v_1 \left(\frac{\partial}{\partial t}\right)_p + v_2 \left(\frac{\partial}{\partial x}\right)_p + v_3 \left(\frac{\partial}{\partial y}\right)_p$, $\mathbf{w} = w_1 \left(\frac{\partial}{\partial t}\right)_p + w_2 \left(\frac{\partial}{\partial x}\right)_p + w_3 \left(\frac{\partial}{\partial y}\right)_p \in T_p\mathbb{H}^3(-c^2)$, define
Cross Product in $T_p\mathbb{H}^3(-c^2)$

Continued

Definition

The cross product $\mathbf{v} \times \mathbf{w}$ is defined by

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2) \left(\frac{\partial}{\partial t} \right)_p + e^{2ct} (v_3 w_1 - v_1 w_3) \left(\frac{\partial}{\partial x} \right)_p + e^{2ct} (v_1 w_2 - v_2 w_1) \left(\frac{\partial}{\partial y} \right)_p,$$

where $p = (t, x, y) \in \mathbb{H}^3(-c^2)$.
The Mean Curvature of a Conformal Parametric Surface in $\mathbb{H}^3(-c^2)$

If a parametric surface $\varphi : M \rightarrow \mathbb{H}^3(-c^2)$ is conformal, the mean curvature H is computed by the formula

$$H = \frac{G\ell + En - 2Fm}{2(EG - F^2)},$$

where

$$E = \langle \varphi_u, \varphi_u \rangle, \quad F = \langle \varphi_u, \varphi_v \rangle, \quad G = \langle \varphi_v, \varphi_v \rangle$$

$$\ell = \langle \varphi_{uu}, N \rangle, \quad m = \langle \varphi_{uv}, N \rangle, \quad n = \langle \varphi_{vv}, N \rangle$$

and $N = \frac{\varphi_u \times \varphi_v}{||\varphi_u \times \varphi_v||}$ is a unit normal vector field on φ.
Rotations in $\mathbb{H}^3(-c^2)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^3(-c^2)$.

- The rotation of a profile curve $\alpha(u) = (u, h(u), 0)$ in the tx-plane about the t-axis through an angle ν:

$$\varphi(u, \nu) = (u, h(u) \cos \nu, h(u) \sin \nu).$$
Rotations in $\mathbb{H}^3(-c^2)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^3(-c^2)$.

- The rotation of a profile curve $\alpha(u) = (u, h(u), 0)$ in the tx-plane about the t-axis through an angle ν:

$$\varphi(u, \nu) = (u, h(u) \cos \nu, h(u) \sin \nu).$$
Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^3(-c^2)$ is computed to be

$$H = \frac{-h''(u) + h(u)}{2e^{-2cu}(h(u))^3}.$$

- By setting $H = c$, we obtain the second order non-linear differential equation of $h(u)$

$$h''(u) - h(u) + 2ce^{-2cu}(h(u))^3 = 0.$$
Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^3(-c^2)$ is computed to be
 \[H = \frac{-h''(u) + h(u)}{2e^{-2cu}(h(u))^3}. \]

- By setting $H = c$, we obtain the second order non-linear differential equation of $h(u)$
 \[h''(u) - h(u) + 2ce^{-2cu}(h(u))^3 = 0. \]
Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
The Illustration of the Limit of Surfaces of Revolution with H as $c \to 0$
Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$
Questions
Limit Behavior of Surfaces of Revolution with CMC $H = c$ as $c \to 0$

- If $c \to 0$, then the differential equation of $h(u)$ becomes
 \[h''(u) - h(u) = 0, \]
 which is a harmonic oscillator. Its solution is
 \[h(u) = c_1 \cosh u + c_2 \sinh u. \]
- For $c_1 = 1$, $c_2 = 0$, we obtain the catenoid
 \[\varphi(u, \nu) = (u, \cosh u \cos \nu, \cosh u \sin \nu), \]
 the minimal surface of revolution in \mathbb{H}^3.
Limit Behavior of Surfaces of Revolution with CMC $H = c$ as $c \to 0$

- If $c \to 0$, then the differential equation of $h(u)$ becomes
 \[h''(u) - h(u) = 0, \]
 which is a harmonic oscillator. Its solution is
 \[h(u) = c_1 \cosh u + c_2 \sinh u. \]

- For $c_1 = 1, c_2 = 0$, we obtain the catenoid
 \[\varphi(u, v) = (u, \cosh u \cos v, \cosh u \sin v), \]
 the minimal surface of revolution in H^3.
The Illustration of the Limit of Surfaces of Revolution with $H = c$ in $\mathbb{H}^3(-c^2)$ as $c \to 0$.

Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$.

Questions:
Surface of Revolution with CMC $H = 1$ in $\mathbb{H}^3(-1)$

Figure: CMC $H = 1$; Profile Curve

Surfaces of Revolution in Hyperbolic 3-Space
Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$
Questions
Surface of Revolution with CMC $H = 1$ in $\mathbb{H}^3(-1)$

Continued
Surface of Revolution with CMC $H = \frac{1}{4}$ in $\mathbb{H}^3(-\frac{1}{16})$
Surface of Revolution with CMC $H = \frac{1}{8}$ in $\mathbb{H}^3\left(-\frac{1}{64}\right)$
Surface of Revolution with CMC $H = \frac{1}{256}$ in $\mathbb{H}^3\left(-\frac{1}{65536}\right)$
Animations

- Animation of Profile Curves $h(u)$
 http://www.math.usm.edu/lee/profileanim.gif

- Animation of Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
 http://www.math.usm.edu/lee/cmcanim.gif
 http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^3)
Animations

- Animation of Profile Curves $h(u)$
 http://www.math.usm.edu/lee/profileanim.gif

- Animation of Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
 http://www.math.usm.edu/lee/cmcanim.gif
 http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^3)
Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_M ||d\varphi||^2$$

under every compactly supported variation of φ.

- $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $
\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.

- A conformal surface $\varphi : M \rightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.

Surfaces of Revolution
Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_M ||d\varphi||^2$$

under every compactly supported variation of φ.

- $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.

- A conformal surface $\varphi : M \rightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.
Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_M ||d\varphi||^2$$

under every compactly supported variation of φ.

- $\varphi : M \rightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.

- A conformal surface $\varphi : M \rightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.

Surfaces of Revolution
For any conformal surface $\phi : M \rightarrow \mathbb{E}^3$, the mean curvature H is computed to be

$$H = \frac{1}{2} e^{-\omega} \langle \triangle \phi, N \rangle.$$

A conformal surface $\phi : M \rightarrow \mathbb{E}^3$ is minimal if and only if $H = 0$.
Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Continued

- For any conformal surface $\varphi : M \longrightarrow \mathbb{E}^3$, the mean curvature H is computed to be

$$H = \frac{1}{2} e^{-\omega} \langle \triangle \varphi, N \rangle.$$

- A conformal surface $\varphi : M \longrightarrow \mathbb{E}^3$ is minimal if and only if $H = 0$.
Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In $\mathbb{H}^3(-c^2)$, there is no relationship between minimal surfaces and mean curvature since harmonic map equation is no longer Laplace’s equation.

- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu’s representation formula.

- However it is not suitable for constructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.
Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In $\mathbb{H}^3(-c^2)$, there is no relationship between minimal surfaces and mean curvature since harmonic map equation is no longer Laplace’s equation.

- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu’s representation formula.

- However it is not suitable for constructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.
Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In $\mathbb{H}^3(-c^2)$, there is no relationship between minimal surfaces and mean curvature since harmonic map equation is no longer Laplace’s equation.

- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu’s representation formula.

- However it is not suitable for constructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.
Construction of Minimal Surface in $\mathbb{H}^3(-c^2)$

- The area functional of $\varphi : M \rightarrow \mathbb{H}^3(-c^2)$ is

$$J = \int_{t_1}^{t_2} f(x, x_t, t) dt = \int_{t_1}^{t_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dt} \right)^2} dt.$$

- The Euler-Lagrange equation $\frac{\partial f}{\partial x} - \frac{d}{dt} \frac{\partial f}{\partial x_t} = 0$ is

$$\frac{d^2 x(t)}{dt^2} - 2 \frac{dx(t)}{dt} - x(t) - e^{-2ct} \left(\frac{dx(t)}{dt} \right)^3 = 0.$$
Construction of Minimal Surface in $\mathbb{H}^3(-c^2)$

- The area functional of $\varphi : M \rightarrow \mathbb{H}^3(-c^2)$ is

$$J = \int_{t_1}^{t_2} f(x, x_t, t) dt = \int_{t_1}^{t_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dt}\right)^2} dt.$$

- The Euler-Lagrange equation $\frac{\partial f}{\partial x} - \frac{d}{dt} \frac{\partial f}{\partial x_t} = 0$ is

$$\frac{d^2 x(t)}{dt^2} - 2\frac{dx(t)}{dt} - x(t) - e^{-2ct} \left(\frac{dx(t)}{dt}\right)^3 = 0.$$
Minimal Surface of Revolution in $\mathbb{H}^3(-1)$

Figure: Minimal Surface of Revolution in $\mathbb{H}^3(-1)$: Profile Curve
Minimal Surface of Revolution in $\mathbb{H}^3(-1)$

Continued

Figure: Minimal Surface of Revolution in $\mathbb{H}^3(-1)$
Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H = c$ in $\mathbb{H}^3(-c^2)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$

Questions

Any Questions?