Remarks on Faugère’s F5 algorithm

John Perry
(based on joint work with Christian Eder)

Department of Mathematics, The University of Southern Mississippi

Sage Days 12, 21 January 2008
F5: algorithm to compute Gröbner bases of polynomial ideals

(J-C Faugère, 2002)
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination
Gröbner bases?

Gröbner basis: “nice form” for generators of polynomial ideal

- “nice”: difficult questions

(B Buchberger, 1965)

Generalizes linear algebra

- Vector space: Gaussian elimination \rightarrow echelon form

\[
\begin{array}{c}
\ast \ast \ast \ast = \ast \\
\ast \ast \ast \ast = \ast \\
\ast \ast \ast = \ast \\
\ast \ast = \ast \\
\ast = \ast \\
\end{array}
\rightarrow
\begin{array}{c}
\ast \ast \ast \ast = \ast \\
\ast \ast \ast = \ast \\
\ast \ast = \ast \\
\ast = \ast \\
\ast = \ast \\
\end{array}
\]

- Polynomial ring: Buchberger’s algorithm \rightarrow Gröbner basis
Gröbner bases?

Gröbner basis: “nice form” for generators of polynomial ideal

- “nice”: difficult questions

(B Buchberger, 1965)

Generalizes linear algebra

- Vector space: Gaussian elimination \rightarrow echelon form

\[
\begin{align*}
\{ & \begin{array}{cccc}
* & * & * & * \equiv * \\
* & * & * & * \equiv * \\
* & * & * & * \equiv * \\
* & * & * & * \equiv *
\end{array} \rightarrow \\
& \begin{array}{cccc}
* & * & * & * \equiv * \\
* & * & * & * \equiv * \\
* & * & * \equiv * \\
* & * \equiv *
\end{array}
\end{align*}
\]

- Polynomial ring: Buchberger’s algorithm \rightarrow Gröbner basis
Buchberger’s algorithm

Given $F \in \mathbb{F} \left[x_1, \ldots, x_n \right]_m$:

1. $G := F$

2. Consider all $p, q \in G$

 1. Compute $S := up - vq$

 (u, p cancel lcm (ltp, ltq))

 2. Top-reduce S over G

 (divisibility of lts: $S = u_1g_1 - u_2g_2 - \cdots$)

 3. $S = 0? \implies$ Append S to G

3. Termination: no new polynomials created

 (Ascending Chain Condition)

- All GB algorithms follow this general outline
 (F5 too!)

- Omitting some details (lt=???)
Remarks on Faugère’s F5 algorithm

John Perry

Buchberger’s algorithm

Given $F \in \mathbb{F} [x_1, \ldots, x_n]^m$:

1. $G := F$

2. Consider all $p, q \in G$

 1. Compute $S := up - vq$
 (u, p cancel lcm (ltp, ltq))
 2. Top-reduce S over G
 (divisibility of lts: $S - u_1g_1 - u_2g_2 - \cdots$)
 3. $S = 0? \implies$ Append S to G

3. Termination: no new polynomials created
 (Ascending Chain Condition)

 - All GB algorithms follow this general outline
 (F5 too!)
 - Omitting some details (lt=???)
Buchberger’s algorithm

Given $F \in \mathbb{F}[x_1, \ldots, x_n]^m$:

1. $G := F$

2. Consider all $p, q \in G$

 1. Compute $S := up - vq$

 (u, p cancel lcm (ltp, ltq))

 2. Top-reduce S over G

 (divisibility of lts: $S - u_1 g_1 - u_2 g_2 - \cdots$)

 3. $S = 0? \implies$ Append S to G

3. Termination: no new polynomials created

 (Ascending Chain Condition)

- All GB algorithms follow this general outline (F5 too!)
- Omitting some details (lt=???)
Buchberger’s algorithm

Given $F \in \mathbb{F} [x_1, \ldots, x_n]^m$:

1. $G := F$

2. Consider all $p, q \in G$

 1. Compute $S := up - vq$

 (u, p cancel lcm (lt p, lt q))

 2. Top-reduce S over G

 (divisibility of lts: $S - u_1 g_1 - u_2 g_2 - \cdots$)

 3. $S = 0$? \implies Append S to G

3. Termination: no new polynomials created

 (Ascending Chain Condition)

- All GB algorithms follow this general outline
 (F5 too!)

- Omitting some details (lt=???)
Quick example

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

1. \(G = (xy + 1, y^2 + 1) \)
 1. \(S = y(xy + 1) - x(y^2 + 1) = y - x \)
 No top-reduction

2. \(G = (xy + 1, y^2 + 1, x - y) \)
 1. \(S = (xy + 1) - y(x - y) = 1 + y^2 \)
 Top-reduces to zero
 2. \(S = x(y^2 + 1) - y^2(x - y) = x + y^3 \)
 Top-reduces to zero
Quick example

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$.

1. $G = (xy + 1, y^2 + 1)$

 $S = y(xy + 1) - x(y^2 + 1) = y - x$

 No top-reduction

2. $G = (xy + 1, y^2 + 1, x - y)$

 $S = (xy + 1) - y(x - y) = 1 + y^2$

 Top-reduces to zero

 $S = x(y^2 + 1) - y^2(x - y) = x + y^3$

 Top-reduces to zero
Quick example

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

1. \(G = \langle xy + 1, y^2 + 1 \rangle \)

 1. \(S = y(xy + 1) - x(y^2 + 1) = y - x \)
 No top-reduction

2. \(G = \langle xy + 1, y^2 + 1, x - y \rangle \)

 1. \(S = (xy + 1) - y(x - y) = 1 + y^2 \)
 Top-reduces to zero

 2. \(S = x(y^2 + 1) - y^2(x - y) = x + y^3 \)
 Top-reduces to zero
Quick example

Problem: Find Gröbner basis of \([xy + 1, y^2 + 1]\).

1. \[G = (xy + 1, y^2 + 1)\]
2. \[S = y(xy + 1) - x(y^2 + 1) = y - x\]
 No top-reduction

1. \[G = (xy + 1, y^2 + 1, x - y)\]
2. \[S = (xy + 1) - y(x - y) = 1 + y^2\]
 Top-reduces to zero
3. \[S = x(y^2 + 1) - y^2(x - y) = x + y^3\]
 Top-reduces to zero

\[\therefore \text{GB } (\langle xy + 1, y^2 + 1 \rangle) = (xy + 1, y^2 + 1, x - y).\]
Remarks on Faugère’s F5 algorithm

John Perry

Bottleneck

- Bottleneck
 - New polynomials → new information
 - Top-reduction to zero ↯ no new polynomial

 ↯ new information

- (100 − ε)% of time: verifying GB, not computing
- Top-reduction very, very expensive
Past work

- *Predict zero reductions*

- *Selection strategy*: Pick pairs in clever ways

- *Forbid some top-reductions*: Involution bases

 (V Gerdt-Y Blinkov 1998)

- *Homogenization*: d-Gröbner bases
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination
Remarks on Faugère’s F5 algorithm

John Perry

F5: overview

F5: combined approach

- Homogenize
- \(d \)-Gröbner bases
- New point of view:
 - New way to predict zero reductions
 - New selection strategy

- Some systems: \textit{no zero reductions}!

“A new efficient algorithm for computing Gröbner bases without reduction to zero (\(F_5\))”
View from linear algebra

- Compute GB ⇔ Triangularize Sylvester matrix of G

 (D Lazard, 1983)

- Triangularize sparse matrix (F4)

 (Faugère, 1999)

- Avoid using different rows to re-compute reductions

 (Faugère, 2002)
Quick example, revisited

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$.

Homogenize: $G = (xy + h^2, y^2 + h^2)$
Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = (xy + h^2, y^2 + h^2) \)

\(d = 2 \):

No cancellations of degree 2...
Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = \langle xy + h^2, y^2 + h^2 \rangle \)

\(d = 3 \):

\[
\begin{pmatrix}
 x^2 y & xy^2 & y^3 & xh^2 & yh^2 \\
 1 & 1 & 1 & xg_1 \\
 1 & 1 & 1 & yg_1 \\
 1 & 1 & 1 & xg_2 \\
 1 & 1 & 1 & yg_2
\end{pmatrix}
\]

Rows 2, 3 cancel…
Quick example, revisited

Problem: Find Gröbner basis of $\langle xy + 1, y^2 + 1 \rangle$.

Homogenize: $G = (xy + h^2, y^2 + h^2)$

$d = 3$:

$$
\begin{pmatrix}
 x^2y & xy^2 & y^3 & xb^2 & yb^2 \\
 1 & 1 & 1 & xg_1 \\
 1 & 1 & 1 & yg_1 \\
 1 & 1 & 1 & xg_2 \\
 1 & 1 & 1 & yg_2 \\
 1 & -1 & 1 & g_3
\end{pmatrix}
$$

New! $g_3 = xb^2 - yb^2$
Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = (xy + h^2, y^2 + h^2) \)

\(d = 3 \):

\[
\begin{pmatrix}
 x^2y & xy^2 & y^3 & xh^2 & yh^2 \\
 1 & 1 & 1 & xg_1 \\
 1 & 1 & 1 & yg_1 \\
 \lambda & \lambda & xg_2 & g_3 \\
 1 & 1 & yg_2 & 1 \\
 1 & -1 & g_3 \\
\end{pmatrix}
\]

linear dependence: \(xg_2 = g_3 + yg_1 \)
Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = (xy + h^2, y^2 + h^2) \)

\(d = 4: \)

\[
\begin{pmatrix}
 x^3 & x^2y & xy^2 & y^3 & y^4 & x^2h & xyh & y^2h & h^4 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

linear dependence: \(x^2g_1, xyg_1, y^2g_1, h^2g_1 \)
Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = (xy + h^2, y^2 + h^2) \)

\(d = 4: \)

\[
\begin{pmatrix}
 x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{pmatrix}
\]

\(x^2g_1 \quad xyg_1 \quad y^2g_1 \quad h^2g_1 \quad y^2g_2 \quad xg_3 \quad yg_3 \)

Rows 4, 7 cancel…
Remarks on Faugère’s F5 algorithm

John Perry

Quick example, revisited

Problem: Find Gröbner basis of \(\langle xy + 1, y^2 + 1 \rangle \).

Homogenize: \(G = (xy + h^2, y^2 + h^2) \)

d = 4:

\[
\begin{pmatrix}
 x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

Rows 4, 7 cancel… but we will not consider them!

Why not?

Later.
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Signatures

- Relation b/w rows

\[
\begin{pmatrix}
x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\
\vdots & & & & & & & \\
1 & 1 & h^2g_1 \\
\vdots & & & & & & & \\
1 & -1 & yg_3
\end{pmatrix}
\]

and generators \(g_1, g_2 \)?

- \(h^2g_1 \): obvious
- \(yg_3 \): \(g_3 = xg_2 - yg_1 \)
Remarks on Faugère’s F5 algorithm

John Perry

F5

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation

Why?
Where?
Two variants

Termination (?)

The difficulty
Faugère’s original argument
Non-terminating example...terminates!
Variants that guarantee termination

Signatures

• Relation b/w rows

\[
\begin{pmatrix}
 x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\
 \vdots \\
 1 & 1 & h^2g_1 \\
 \vdots \\
 1 & -1 & yg_3
\end{pmatrix}
\]

and generators \(g_1, g_2\)?

• \(h^2g_1\): obvious
• \(yg_3\): \(g_3 = xg_2 - yg_1\)

Signature of \(g_3\): \(\text{Sig}(g_3) = xg_2\).

\(\therefore\) \(\text{Sig}(yg_3) = xyg_2\).
Signatures: Observations

- \(\text{Sig}(p) = tg_i ? \)
 - \(1 \leq i \leq m \)
 - \(g = b_1 g_1 + \cdots + b_{i-1} g_{i-1} + (t + \cdots) g_i \) (inputs: \((g_1, \ldots, g_m)\)) (\(\exists h_1, \ldots, b_i, \text{lt}(h_i) = t \))

- this definition \(\neq \) Faugère’s definition

- “easy” record-keeping: list of rules
- “easily” reject certain useless pairs:
 - Use \(yg_3 \ w/\text{sig}\ xyg_2, \not xyg_2 \)
 - Use \(xg_3 \ w/\text{sig}\ x^2g_2, \not x^2g_2 \)
 - ...

- Criterion “Rewritten”

Signatures: Observations

- \(\text{Sig}(p) = tg_i ? \)
 - \(1 \leq i \leq m \)
 - \(g = b_1g_1 + \cdots + b_{i-1}g_{i-1} + (t + \cdots)g_i \) (inputs: \((g_1, \ldots, g_m) \)) \((\exists h_1, \ldots, h_i, \text{lt}(h_i) = t) \)
 - this definition = algorithmic behavior
 \(\neq \) Faugère’s definition

- “easy” record-keeping: list of rules
- “easily” reject certain useless pairs:
 - Use \(yg_3 \) w/sig \(xyg_2 \), not \(xyg_2 \)
 - Use \(xg_3 \) w/sig \(x^2g_2 \), not \(x^2g_2 \)
 - …

- Criterion “Rewritten”

Faugère’s characterization

Theorem (Faugère, 2002)

\[(A) \iff (B) \text{ where} \]

\[(A) \text{ } G \text{ a Gröbner basis} \]
\[(B) \forall p, q \in G \text{ where} \]
\[\begin{itemize}
 \item \text{uSig}(p), \text{vSig}(q) \text{ not rewritable, and} \\
 \item \text{uSig}(p), \text{vSig}(q) \text{ minimal}
\end{itemize} \]

\text{S-polynomial } up - vq \text{ top-reduces to zero w/out changing signature}

(highly paraphrased, slightly generalized)
Remarks on Faugère’s F5 algorithm

John Perry

Outline

1. F5
 - Gröbner bases: review
 - Rough idea
 - Signatures
 - Predicting zero reductions
 - The algorithm

2. Implementation
 - Why?
 - Where?
 - Two variants

3. Termination (?)
 - The difficulty
 - Faugère’s original argument
 - Non-terminating example . . . terminates!
 - Variants that guarantee termination
How to predict zero reductions?

- Recall

\[
\begin{pmatrix}
 x^3y & x^2y^2 & xy^3 & y^4 & x^2h^2 & xyh^2 & y^2h^2 & h^4 \\
 \vdots \\
 1 & -1 & h^2g_1 \\
 \vdots \\
 1 & -1 & yg_3
\end{pmatrix}
\]

We did not cancel. Why not?

- S-poly top-reduces to zero
- can predict this
How to predict zero reductions?

- Recall

\[
\begin{pmatrix}
x^3 y & x^2 y^2 & xy^3 & y^4 & x^2 h^2 & xyh^2 & y^2 h^2 & h^4 \\
\end{pmatrix}
\]

We did not cancel. *Why not?*

- *S-poly top-reduces to zero*
- *can predict this*

How?
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Faugère’s criterion

Theorem
If
• \(u \text{Sig}(p) = u g_i \); and
• \(\text{lt}(q) \mid u, \exists q \in \text{GB}_{\text{prev}} (g_1, \ldots, g_{i-1}) \);
then \(u \text{Sig}(p) \) is not minimal.

Definition
\(\text{FC}(u \text{Sig}(p)) : \text{lt}(q) \mid u, \exists q \in \text{G}_{\text{prev}} \)

Corollary
In S-polynomial \(u p - vq \),
if \(\text{FC}(u \text{Sig}(p)) \) or \(\text{FC}(v \text{Sig}(q)) \)
then we need not compute S.
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (??)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Faugère’s criterion

Theorem

If

- \(u \text{Sig}(p) = u g_i \); and
- \(\text{lt}(q) | u, \exists q \in \text{GB}_{\text{prev}}(g_1, \ldots, g_{i-1}) \);

then \(u \text{Sig}(p) \) is not minimal.

Definition

\(\text{FC}(u \text{Sig}(p)) : \text{lt}(q) | u, \exists q \in \text{GB}_{\text{prev}} \)

Corollary

In S-polynomial \(u p - v q \),

if \(\text{FC}(u \text{Sig}(p)) \) or \(\text{FC}(v \text{Sig}(q)) \)

then we need not compute S.
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

In the example...

- Recall

\[
\begin{pmatrix}
 x^3 y & x^2 y^2 & xy^3 & y^4 & x^2 h^2 & xy h^2 & y^2 h^2 & h^4 \\
 \vdots & & & & & & & \\
 1 & -1 & h^2 g_1 \\
 \vdots & & & & & & & \\
 1 & -1 & y g_3
\end{pmatrix}
\]

- \(G_{\text{prev}} = (g_1) \)
- \(\text{Sig}(g_3) = x g_2 \)

- \(y \text{Sig}(g_3) = xy g_2, \text{ and } \text{lt}(g_1) | xy... \)

\[\text{FC} \implies \text{no need to compute S-polynomial} \]

Why?
In the example...

- Recall

\[
\begin{pmatrix}
x^3 y & x^2 y^2 & xy^3 & y^4 & x^2 h^2 & xy h^2 & y^2 h^2 & h^4 \\
1 & -1 & h^2 g_1 \\
1 & -1 & yg_3
\end{pmatrix}
\]

- \(G_{\text{prev}} = (g_1) \)
- \(\text{Sig}(g_3) = xg_2 \)

\(\gamma \text{Sig}(g_3) = xyg_2 \), and \(\text{lt}(g_1) | xy \ldots \)

FC \(\Rightarrow \) no need to compute \(S \)-polynomial

Why?
Why? Trivial syzygies

Recall $y g_3 = y [x g_2 - y g_1]$...
Why? Trivial syzygies

Recall $y g_3 = y [x g_2 - y g_1] \ldots$

$\therefore y g_3 = y [x g_2 - y g_1]$

$= x y g_2 - y^2 g_1$
Why? Trivial syzygies

Recall \(yg_3 = y[xg_2 - yg_1] \) …

\[
\therefore yg_3 = y[xg_2 - yg_1] = xyg_2 - y^2g_1
\]

Trivially \(g_1g_2 - g_2g_1 = 0 \).
Why? Trivial syzygies

Recall \(yg_3 = y[xg_2 - yg_1] \)...

\[\therefore yg_3 = y[xg_2 - yg_1] \]
\[= xyg_2 - y^2g_1 \]

Trivially \(g_1g_2 - g_2g_1 = 0 \).

\[\therefore yg_3 = xyg_2 - y^2g_1 \]
\[- \left[(xy + h^2)g_2 - (y^2 + h^2)g_1 \right] \]
\[= -h^2g_2 + h^2g_1 \]
Why? Trivial syzygies

Recall \(yg_3 = y[g_2 - g_1] \)…

\[
\therefore yg_3 = y[g_2 - g_1] \\
= xyg_2 - y^2 g_1
\]

Trivially \(g_1g_2 - g_2g_1 = 0 \).

\[
\therefore yg_3 = xyg_2 - y^2 g_1 \\
- \left[(xy + h^2)g_2 - (y^2 + h^2)g_1 \right] \\
= -h^2g_2 + h^2g_1
\]

\(\text{Sig}(yg_3) \) not minimal!
Remarks on Faugère’s F5 algorithm

John Perry

Outline

1 F5
 Gröbner bases: review
 Rough idea
 Signatures
 Predicting zero reductions
 The algorithm

2 Implementation
 Why?
 Where?
 Two variants

3 Termination (?)
 The difficulty
 Faugère’s original argument
 Non-terminating example...terminates!
 Variants that guarantee termination
The F5 Algorithm

1. Each stage: Incremental strategy
 1. Compute $\text{GB}(g_1)$
 2. Compute $\text{GB}(g_1, g_2)$
 3. ...

2. d-GB’s $\rightsquigarrow \text{GB}(g_1, \ldots, g_i)$

3. only S-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.

4. Top-reduce, but not if reduction...
 1. satisfies (FC); or
 2. rewritable.

5. Track new polys with signature
Remarks on Faugère’s F5 algorithm

John Perry

The F5 Algorithm

1. Each stage: Incremental strategy
 1. Compute GB(g_1)
 2. Compute GB(g_1, g_2)
 3. ...

2. d-GB’s \leadsto GB(g_1, \ldots, g_i)

3. only S-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.

4. Top-reduce, but not if reduction...
 1. satisfies (FC); or
 2. rewritable.

5. Track new polys with signature
Remarks on Faugère’s F5 algorithm

John Perry

The F5 Algorithm

1. Each stage: Incremental strategy
 - 1. Compute GB(\(g_1\))
 - 2. Compute GB(\(g_1, g_2\))
 - 3. ...

2. \(d\)-GB’s \(\rightsquigarrow\) GB(\(g_1, \ldots, g_i\))

3. only \(S\)-polys with
 - signatures that do not satisfy (FC); and
 - non-rewritable components.

4. Top-reduce, but not if reduction...
 - 1. satisfies (FC); or
 - 2. rewritable.

5. Track new polys with signature

Certain details omitted...
Zero reductions?

Definition
If $G = (g_1, \ldots, g_m)$ has trivial syzygies only, then G is a regular sequence.

Many systems are regular sequences;
many non-regular systems can be rewritten as regular.

Corollary
If input to F5 is a regular sequence, then no zero reductions occur.
Remarks on Faugère’s F5 algorithm

John Perry

Zero reductions?

Definition

If $G = (g_1, \ldots, g_m)$ has trivial syzygies only, then G is a **regular sequence**.

Many systems are regular sequences; many non-regular systems can be rewritten as regular.

Corollary

If input to F5 is a regular sequence, then no zero reductions occur.
Relation to Buchberger’s criteria?

None.

- F5 needs to compute signatures
- Buchberger’s criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)
Relation to Buchberger’s criteria?

None.

- F5 needs to compute signatures
- Buchberger’s criteria ignorant of signatures
- Mixing leads to non-termination
- (but see Gash, 2008)
Remarks on Faugère’s F5 algorithm

John Perry

1. F5
 Gröbner bases: review
 Rough idea
 Signatures
 Predicting zero reductions
 The algorithm

2. Implementation
 Why?
 Where?
 Two variants

3. Termination (?)
 The difficulty
 Faugère’s original argument
 Non-terminating example... terminates!
 Variants that guarantee termination
Motivation

- little public code...
 - Stegers: Magma
 - I don’t have Magma
 - I like Sage, can use Maple
 - FGb source code not public

- compare with other algorithms
 - selection strategy
 - predicting zero reduction
 - time/space tradeoff?
Remarks on Faugère’s F5 algorithm

John Perry

1. F5
 - Gröbner bases: review
 - Rough idea
 - Signatures
 - Predicting zero reductions
 - The algorithm

2. Implementation
 - Why?
 - Where?
 - Two variants

3. Termination (?)
 - The difficulty
 - Faugère’s original argument
 - Non-terminating example... terminates!
 - Variants that guarantee termination
Implementations (1)

- **Faugère (2002)**
 - C, interfaces w/Maple
 - *Very* fast
 - Several variants: F5, F5’, F5”, …?
 - Source code not publicly available, binary download

- **Stegers (2005)**
 - Interpreted Magma code
 - Respectable timings
 - Variant “F5R”

- **Others**
 - Unstable implementations
 - Magma implementation?
Remarks on Faugère’s F5 algorithm

John Perry

Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (??)
The difficulty
Faugère’s original argument
Non-terminating example...terminates!
Variants that guarantee termination

Implementations (2)

- Perry (2007)
 - Interpreted Maple code
 - Embarassingly slow
 - Source code publicly available

 - Interpreted Singular code
 - Respectable timings
 - New variant “F5C”
 - http://www.math.usm.edu/perry/research.html
Remarks on Faugère’s F5 algorithm

John Perry

Implementations (3)

- Albrecht (2008)
 - Interpreted Sage/Python code
 - Faster than Eder, Perry (2008)
 - Variants F5, F5R, F5C
 - http://bitbucket.org/malb/algebraic_attacks/

- King (2008)
 - Compiled Sage/Cython code
 - Faster than Eder, Perry (2008) and Albrecht (2008)?
 - Variant F5R; variants F5 and F5C by Perry
 - http://www.math.usm.edu/perry/research.html

- Eder (in progress)
 - F5 in Singular kernel
 - Access to many Singular optimizations
 - Sage uses Singular, so direct benefit to Sage
 - Source code will be publicly available
So you want to implement F5...

- Faugère’s pseudocode:
 www-spaces.lip6.fr/@papers/F02a.pdf
 (2004 edition, corrected!)

- Stegers’ pseudocode:
 wwwcsif.cs.ucdavis.edu/~stegers/
 (contains errors)

- Perry’s pseudocode:
 www.math.usm.edu/perry/research.html
 (used for Singular, Sage implementations)
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example…terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example…terminates!
Variants that guarantee termination
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Reduced Gröbner basis

• Some inefficiency in F5
 • Not all top-reductions allowed
 • Redundant lt’s added
 • Necessary this stage, but...
 • ...not next stages, not for GB

• Reduced Gröbner basis?
 • Pruning of redundant lt’s
 • Well-known optimization

• “Naïve” F5 does not use RGB
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example… terminates!
Variants that guarantee termination

Reduced Gröbner basis

- Some inefficiency in F5
 - Not all top-reductions allowed
 - Redundant lt’s added
 - Necessary this stage, but…
 - … not next stages, not for GB

- Reduced Gröbner basis?
 - Pruning of redundant lt’s
 - Well-known optimization

- “Naïve” F5 does not use RGB
F5R (Stegers, 2006)

- Compute GB G of $\langle f_1, \ldots, f_i \rangle$
- Compute RGB B of $\langle G \rangle$
- Compute GB of $\langle f_1, \ldots, f_{i+1} \rangle$
 - Use G for critical pairs, B for top-reduction
- *Many* fewer reductions than F5, but...
- Same # polys considered, generated

(usual F5)
(easy: interreduce G)
F5C (Eder and Perry, 2008–2009)

- Compute GB G of $\langle f_1, \ldots, f_i \rangle$
- Compute RGB B of $\langle G \rangle$
- Compute GB of $\langle f_1, \ldots, f_{i+1} \rangle$
 - Use B for top-reduction and for critical pairs
 - Modify rewrite rules
- Significantly fewer reductions than F5R, and...
- Fewer polys considered, generated
Remarks on Faugère’s F5 algorithm

John Perry

#Critical pairs, #Polynomials in variants

<table>
<thead>
<tr>
<th>i</th>
<th>$#G_{\text{curr}}$</th>
<th>$\max {#P_d}$</th>
<th>i</th>
<th>$#G_{\text{curr}}$</th>
<th>$\max {#P_d}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>8</td>
<td>6</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>17</td>
<td>7</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>132</td>
<td>29</td>
<td>8</td>
<td>109</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>524</td>
<td>89</td>
<td>9</td>
<td>472</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>1165</td>
<td>276</td>
<td>10</td>
<td>778</td>
<td>89</td>
</tr>
</tbody>
</table>
Remarks on Faugère’s F5 algorithm

John Perry

F5
Grobner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

#Reductions

<table>
<thead>
<tr>
<th>variant:</th>
<th>F5</th>
<th>F5R</th>
<th>F5C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katsura-5</td>
<td>346</td>
<td>289</td>
<td>222</td>
</tr>
<tr>
<td>Katsura-6</td>
<td>8,357</td>
<td>2,107</td>
<td>1,383</td>
</tr>
<tr>
<td>Katsura-7</td>
<td>1,025,408</td>
<td>24,719</td>
<td>10,000</td>
</tr>
<tr>
<td>Cyclic-5</td>
<td>441</td>
<td>457</td>
<td>415</td>
</tr>
<tr>
<td>Cyclic-6</td>
<td>36,139</td>
<td>17,512</td>
<td>10,970</td>
</tr>
</tbody>
</table>

(Top-reduction, normal forms)

(Many more in Gebauer-Möller: > 1,500,000 in Cyclic-6)
Remarks on Faugère’s F5 algorithm

John Perry

1 F5
 Gröbner bases: review
 Rough idea
 Signatures
 Predicting zero reductions
 The algorithm

2 Implementation
 Why?
 Where?
 Two variants

3 Termination (?)
 The difficulty
 Faugère’s original argument
 Non-terminating example... terminates!
 Variants that guarantee termination
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Termination: the difficulty

Termination?

• Buchberger: ACC \implies S-polys reduce to zero eventually

• Faugère: S-polys w/ minimal signatures computed, but...
Remarks on Faugère’s F5 algorithm

Termination: the difficulty

Termination?

- Buchberger: ACC \implies S-polys reduce to zero eventually
- Faugère: S-polys w/ minimal signatures computed, *but* ...
 - Some top-reductions forbidden
 - Regular system: no zero reductions
 - How recognize GB property?
Remarks on Faugère’s F5 algorithm

John Perry

Outline

1. F5
 - Gröbner bases: review
 - Rough idea
 - Signatures
 - Predicting zero reductions
 - The algorithm

2. Implementation
 - Why?
 - Where?
 - Two variants

3. Termination (?)
 - The difficulty
 - Faugère’s original argument
 - Non-terminating example...terminates!
 - Variants that guarantee termination
Faugère’s original argument

Theorem

If reduction stage concludes without zero reductions, then ideal of lt’s has increased.

Example

S-polynomial of \(f_1 = xy + 1, f_2 = y^2 + 1 \) did not reduce to zero;
new polynomial \(x - y \);
new lt *x*!
Faugère’s original argument

Theorem

If reduction stage concludes without zero reductions, then ideal of lt’s has increased.

This theorem is wrong.

Example (Gash, 2008)

- Uses Faugère’s example (2002 paper)
- Consider S-polynomials in different order
- \(\leadsto\) no reduction to zero
- *and* ideal of lt’s does not increase.
- “redundant polynomials”
Redundant polynomials: necessary?

Why does F5 compute redundant polynomials?
- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example
- p_1 top-reducible by p_2, but forbidden
- p_1 added to GB \rightsquigarrow new rewrite rule
- p_3 top-reducible by p_1? now allowed
- equivalent to top-reduction by p_2
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Redundant polynomials: necessary?

Why does F5 compute redundant polynomials?

- Some top-reductions forbidden
- Redundant polynomials restore necessary top-reductions

Example

- \(p_1 \) top-reducible by \(p_2 \), but forbidden
- \(p_1 \) added to GB \(\rightarrow \) new rewrite rule
- \(p_3 \) top-reducible by \(p_1 \)? \textit{now allowed}
- equivalent to top-reduction by \(p_2 \)
Possible resolution...?

An idea:

- Suppose reduction stage returns redundant polynomials
 - d-Gröbner basis!
- keep polys, but...
- not their S-polys
 - multiples of reducers’ S-polynomials
- **Guaranteed termination!** *but*...
- No longer guaranteed correct!
 - Non-trivial concern: *Cyclic-7 oops!*
 - Rewrite rules \implies non-computed S-polys!
Possible resolution...?

An idea:

- Suppose reduction stage returns redundant polynomials
 - \(d\)-Gröbner basis!
- keep polys, but...
- not their \(S\)-polys
 - multiples of reducers’ \(S\)-polynomials
- **Guaranteed termination!** \(but...\)
- **No longer guaranteed correct!**
 - Non-trivial concern: *Cyclic-7 oops!*
 - Rewrite rules \(\Rightarrow\) non-computed \(S\)-polys!
Regular case

- General agreement: termination
- Proof in Faugère’s HDR? (2007)
- Another idea (J Gash, 2009)
 - Non-termination? chain of divisible lt’s
 - Subchain of divisible signatures (ACC)
 - Cannot occur in regular case
 - Still working on this...
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination
Non-terminating examples

- Widespread belief: F5 does not always terminate
- Proposals for non-terminating systems
 - Stegers’ `nonTerminatingExample.mag`
 - Brickenstein’s example
 (private communication, exploit iterative computation)
- However...
 - Singular and Sage: *both* systems terminate
nonTerminatingExample.mag

Termination in Singular and Sage, not in Magma?!?

- Error in implementation
 - Rewrite rules sometimes not assigned
 - Some top-reductions not completed

- Correction \Rightarrow termination!

(R Dellaca-J Gash-J Perry, 2009)
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Outline

1 F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

2 Implementation
Why?
Where?
Two variants

3 Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Private communications

- Faugère, 2007 HDR: proof fixed
 - Regular sequences only?
 - Find me a copy?
- Zobnin, 2008: Restructured algorithm
 - Proceeds by increasing signature, other changes
 - Implementation?
Gash (2008 PhD Dissertation)

- Redundant polynomials \mapsto special bin D
- Test for GB: force carefully-chosen zero reductions
- If failure, add D to GB and proceed
- Loss of efficiency via zero reductions vs. guaranteed termination and correctness
Another solution?

Another idea: modified F5C

- Suppose reduction stage returns redundant polynomials
 - \(d \)-Gröbner basis!
- Immediately interreduce, discard all redundant polynomials
- Re-examine all pairs
 - \(S \)-polynomials of degree \(\leq d \): good! new rewrite rule
 - \(S \)-polynomials of degree \(> d \): bad! compute \(S \)-poly

WARNING:

The above has not (yet) been proved or implemented.
Remarks on Faugère’s F5 algorithm

John Perry

F5
Gröbner bases: review
Rough idea
Signatures
Predicting zero reductions
The algorithm

Implementation
Why?
Where?
Two variants

Termination (?)
The difficulty
Faugère’s original argument
Non-terminating example... terminates!
Variants that guarantee termination

Thank you!