Reducing the number and size of linear programs in a dynamic Gröbner basis algorithm

John Perry

ABSTRACT

The dynamic algorithm to compute a Gröbner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many constraints. This paper describes two methods of reducing the cost substantially.

Dynamic Algorithm

Idea

- seek “optimal” ordering while computing basis
- measure “optimality” using Hilbert function

Pseudocode

inputs \(F \), generators of polynomial ideal \(I \)

outputs

\(\sigma \), monomial ordering

\(G \), Gröbner basis of \(I \) with respect to \(\sigma \)

1. Let \(G = \{ \} \), \(P = \{ (f, 0) : f \in F \} \), \(\sigma \) any ordering
2. repeat while \(P \neq \emptyset \)
 (a) Select \((p, q) \in P \) and remove it
 (b) Let \(r \) be some \(\sigma \)-normal form of spoly\((p, q)\) modulo \(G \)
 (c) If \(r \neq 0 \)
 i. Add \((g, r) \) to \(P \) for each \(g \in G \)
 ii. Add \(r \) to \(G \)
 (d) Select an ordering \(\tau \)
 (e) Add to \(P \) any \((p, q) \) such that \(p, q \in G \wedge \text{lm}_\tau(p) \neq \text{lm}_\tau(p) \)
 (f) Let \(\sigma = \tau \)
3. return \(G, \sigma \)

Better Living Through Geometry

Geometry of monomial orderings

- Orderings \(\leftrightarrow \) cones in positive orthant (Gröbner fan) [5]
- Add polynomials? split some cones

\[g_1 = x^2 + y^2 - 4 \]
\[g_2 = xy - 1 \]
\[g_3 = \text{spoly}(g_1, g_2) = y^3 + x - 4y \]
\[\text{lm}_\sigma(G) = (x^2, xy) \]
\[\text{lm}_\tau(G) = (xy^2, x, y) \]
\[\text{lm}_\mu(G) = (y^3, xy, y^3) \]

Corner vectors

Theorem ([2]): If we know corner vectors \Omega of cone, we need constraints only for monomials \(u \) such that \(\omega(t - u) > 0 \) for all \(\omega \in \Omega \).

- BUT! hard to find all corners
 - find corners that maximize, minimize each \(x_i \)
- BUT! might miss some potential leading monomials
 - \(\text{lm}(G) \) might change later, which is bad
 - add constraints to revert changes

Example: (cross-section of 3d-cone)

Experimental Results

<table>
<thead>
<tr>
<th>System</th>
<th>linear programs prevented by...</th>
<th>nmbr cmptd</th>
<th>max size</th>
<th>size of GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caboara 1</td>
<td>24</td>
<td>0</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Caboara 2</td>
<td>88</td>
<td>0</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Caboara 4</td>
<td>14</td>
<td>0</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Caboara 6</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Caboara 8</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Cyc-6</td>
<td>3,942</td>
<td>762</td>
<td>1988</td>
<td>89</td>
</tr>
<tr>
<td>Cyc-7</td>
<td>3,917,437</td>
<td>4,165</td>
<td>8,106</td>
<td>250</td>
</tr>
<tr>
<td>Cyc-6 hom.</td>
<td>2,042</td>
<td>6</td>
<td>83</td>
<td>54</td>
</tr>
<tr>
<td>Cyc-7 hom.</td>
<td>88,774</td>
<td>0</td>
<td>143</td>
<td>104</td>
</tr>
<tr>
<td>Kat-6</td>
<td>751</td>
<td>2</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td>Kat-7</td>
<td>3,979</td>
<td>7</td>
<td>85</td>
<td>27</td>
</tr>
<tr>
<td>Kat-6 hom.</td>
<td>533</td>
<td>0</td>
<td>23</td>
<td>77</td>
</tr>
<tr>
<td>Kat-7 hom.</td>
<td>16,556</td>
<td>8</td>
<td>132</td>
<td>222</td>
</tr>
</tbody>
</table>

Observations and comments

- "cor vec’s" + "trck" + "nmbr cmptd = #lp’s by divisibility
- substantial reduction in number and size of linear programs
- determining feasibility, ordering no longer bottleneck
- Applied divisibility criterion \(O(n^2) \) comparisons before corner vectors \(O(n) \). Reversing increases "cor vec’s" efficiency.

The Fine Print

- Normal strategy. Results sensitive to strategy, first polynomial.
- Sage-5.0 w/Cython (patched). C++ implementation planned.
- "trck" counts programs not computed by/c already rejected.
- Cyc-7 used min. degree strategy, corner vectors first.

Citations and Acknowledgments

Thanks to Nathann Cohen for help with linear programming in Sage, and to Massimo Caboara for insight and encouragement.