The Method of Frobenius

Bernd Schröder
What is the Method of Frobenius?

The method of Frobenius works for differential equations of the form:

\[y'' + P(x)y' + Q(x)y = 0 \]

in which \(P \) or \(Q \) is not analytic at the point of expansion \(x_0 \).

But \(P \) and \(Q \) cannot be arbitrary:

\[(x - x_0)P(x) \text{ and } (x - x_0)^2Q(x) \]

must be analytic at \(x_0 \).

Instead of a series solution

\[y = \sum_{n=0}^{\infty} c_n(x - x_0)^n \]

we obtain a solution of the form

\[y = \sum_{n=0}^{\infty} c_n(x - x_0)^n + r \]

The method of Frobenius is guaranteed to produce one solution, but it may not produce two linearly independent solutions.
What is the Method of Frobenius?

1. The method of Frobenius works for differential equations of the form $y'' + P(x)y' + Q(x)y = 0$ in which P or Q is not analytic at the point of expansion x_0.
What is the Method of Frobenius?

1. The method of Frobenius works for differential equations of the form $y'' + P(x)y' + Q(x)y = 0$ in which P or Q is not analytic at the point of expansion x_0.

2. But P and Q cannot be arbitrary: $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ must be analytic at x_0.
What is the Method of Frobenius?

1. The method of Frobenius works for differential equations of the form $y'' + P(x)y' + Q(x)y = 0$ in which P or Q is not analytic at the point of expansion x_0.

2. But P and Q cannot be arbitrary: $(x - x_0)P(x)$ and $(x - x_0)^2 Q(x)$ must be analytic at x_0.

3. Instead of a series solution $y = \sum_{n=0}^{\infty} c_n (x - x_0)^n$, we obtain a solution of the form $y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Method of Frobenius
What is the Method of Frobenius?

1. The method of Frobenius works for differential equations of the form \(y'' + P(x)y' + Q(x)y = 0 \) in which \(P \) or \(Q \) is not analytic at the point of expansion \(x_0 \).

2. But \(P \) and \(Q \) cannot be arbitrary: \((x - x_0)P(x)\) and \((x - x_0)^2Q(x)\) must be analytic at \(x_0 \).

3. Instead of a series solution \(y = \sum_{n=0}^{\infty} c_n (x - x_0)^n \), we obtain a solution of the form \(y = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r} \).

4. The method of Frobenius is guaranteed to produce one solution, but it may not produce two linearly independent solutions.
What is the Method of Frobenius?
What is the Method of Frobenius?

5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c_n.
What is the Method of Frobenius?

5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c_n.

6. These equations will allow us to compute r and the c_n.
What is the Method of Frobenius?

5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for \(r \) and a set of equations for the \(c_n \).

6. These equations will allow us to compute \(r \) and the \(c_n \).

7. For each value of \(r \) (typically there are two), we can compute the solution just like for series.
What is the Method of Frobenius?

5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for \(r \) and a set of equations for the \(c_n \).

6. These equations will allow us to compute \(r \) and the \(c_n \).

7. For each value of \(r \) (typically there are two), we can compute the solution just like for series.

That’s it.
Solve the Differential Equation

$$9x^2 y'' + 3x^2 y' + 2y = 0$$
Solve the Differential Equation

$9x^2y'' + 3x^2y' + 2y = 0$

$9x^2y'' + 3x^2y' + 2y = 0$
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[9x^2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)'' + 3x^2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)' + 2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right) = 0 \]
Solve the Differential Equation

$9x^2y'' + 3x^2y' + 2y = 0$

$9x^2 y'' + 3x^2 y' + 2y = 0$

$9x^2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)'' + 3x^2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)' + 2 \sum_{n=0}^{\infty} c_n x^{n+r} = 0$
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[9x^2 \left(\sum_{n=0}^{\infty} c_n x^{n+r} \right)'' + 3x^2 \sum_{n=0}^{\infty} c_n (n+r)x^{n+r-1} + 2 \sum_{n=0}^{\infty} c_n x^{n+r} = 0 \]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[
9x^2 \sum_{n=0}^{\infty} c_n (n + r)(n + r - 1)x^{n+r-2} + 3x^2 \sum_{n=0}^{\infty} c_n (n + r)x^{n+r-1} + 2 \sum_{n=0}^{\infty} c_n x^{n+r} = 0
\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[
9x^2 \sum_{n=0}^{\infty} c_n(n + r)(n + r - 1)x^{n+r-2} + 3x^2 \sum_{n=0}^{\infty} c_n(n + r)x^{n+r-1} + 2 \sum_{n=0}^{\infty} c_nx^{n+r} = 0
\]

\[
\sum_{n=0}^{\infty} 9(n + r)(n + r - 1)c_nx^{n+r} + \sum_{n=0}^{\infty} 3(n + r)c_nx^{n+r+1} + \sum_{n=0}^{\infty} 2c_nx^{n+r} = 0
\]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[
9x^2 \sum_{n=0}^{\infty} c_n(n+r)(n+r-1)x^{n+r-2} + 3x^2 \sum_{n=0}^{\infty} c_n(n+r)x^{n+r-1} + 2 \sum_{n=0}^{\infty} c_n x^{n+r} = 0
\]

\[
\sum_{n=0}^{\infty} 9(n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} 3(n+r)c_n x^{n+r+1} + \sum_{n=0}^{\infty} 2c_n x^{n+r} = 0
\]

\[
\sum_{k=0}^{\infty} 9(k+r)(k+r-1)c_k x^{k+r} + \sum_{k=1}^{\infty} 3(k+r-1)c_{k-1} x^{k+r} + \sum_{k=0}^{\infty} 2c_k x^{k+r} = 0
\]
Solve the Differential Equation

\[9x^2y''' + 3x^2y' + 2y = 0 \]

\[
9x^2 \sum_{n=0}^{\infty} c_n(n+r)(n+r-1)x^{n+r-2} + 3x^2 \sum_{n=0}^{\infty} c_n(n+r)x^{n+r-1} + 2 \sum_{n=0}^{\infty} c_n x^{n+r} = 0
\]

\[
\sum_{n=0}^{\infty} 9(n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} 3(n+r)c_n x^{n+r+1} + \sum_{n=0}^{\infty} 2c_n x^{n+r} = 0
\]

\[
\sum_{k=0}^{\infty} 9(k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} 3(k+r-1)c_{k-1} x^{k+r} + \sum_{k=0}^{\infty} 2c_k x^{k+r} = 0
\]

\[
(9r(r-1)+2)c_0 x^r + \sum_{k=1}^{\infty} \left[9(k+r)(k+r-1)c_k + 3(k+r-1)c_{k-1} + 2c_k \right] x^{k+r} = 0
\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

Indicial equation:

\[(9r(r - 1) + 2)c_0 = 0 \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

Indicial equation:

\[(9r(r - 1) + 2)c_0 = 0\]
\[9r(r - 1) + 2 = 0\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

Indicial equation:

\[(9r(r - 1) + 2)c_0 = 0\]

\[9r(r - 1) + 2 = 0\]

\[9r^2 - 9r + 2 = 0\]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

Indicial equation:

\[
(9r(r - 1) + 2)c_0 = 0 \\
9r(r - 1) + 2 = 0 \\
9r^2 - 9r + 2 = 0 \\
r_{1,2} = \frac{9 \pm \sqrt{81 - 72}}{18}
\]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

Indicial equation:

\[
(9r(r - 1) + 2)c_0 = 0
\]

\[
9r(r - 1) + 2 = 0
\]

\[
9r^2 - 9r + 2 = 0
\]

\[
r_{1,2} = \frac{9 \pm \sqrt{81 - 72}}{18}
\]

\[
= \frac{9 \pm 3}{18}
\]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

Indicial equation:

\[
\begin{align*}
(9r(r - 1) + 2)c_0 & = 0 \\
9r(r - 1) + 2 & = 0 \\
9r^2 - 9r + 2 & = 0 \\
\end{align*}
\]

\[
\begin{align*}
r_{1,2} & = \frac{9 \pm \sqrt{81 - 72}}{18} \\
& = \frac{9 \pm 3}{18} \\
& = \frac{2}{3}
\end{align*}
\]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

Indicial equation:

$$(9r(r-1) + 2)c_0 = 0$$
$$9r(r-1) + 2 = 0$$
$$9r^2 - 9r + 2 = 0$$

$$r_{1,2} = \frac{9 \pm \sqrt{81 - 72}}{18}$$
$$= \frac{9 \pm 3}{18}$$
$$= \frac{2}{3}, \frac{1}{3}$$
Solve the Differential Equation
\[9x^2y'' + 3x^2y' + 2y = 0 \]
Recurrence Relation.
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

Recurrence Relation.

\[9(k + r)(k + r - 1)c_k + 3(k + r - 1)c_{k-1} + 2c_k = 0 \]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

Recurrence Relation.

\[
\begin{align*}
9(k+r)(k+r-1)c_k + 3(k+r-1)c_{k-1} + 2c_k &= 0 \\
[9(k+r)(k+r-1) + 2]c_k + 3(k+r-1)c_{k-1} &= 0
\end{align*}
\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

Recurrence Relation.

\[
9(k+r)(k+r-1)c_k + 3(k+r-1)c_{k-1} + 2c_k = 0
\]

\[
\left[9(k+r)(k+r-1) + 2 \right] c_k + 3(k+r-1)c_{k-1} = 0
\]

\[
\left[9(k+r)(k+r-1) + 2 \right] c_k = -3(k+r-1)c_{k-1}
\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

Recurrence Relation.

\[9(k + r)(k + r - 1)c_k + 3(k + r - 1)c_{k-1} + 2c_k = 0\]

\[\left[9(k + r)(k + r - 1) + 2\right]c_k + 3(k + r - 1)c_{k-1} = 0\]

\[\left[9(k + r)(k + r - 1) + 2\right]c_k = -3(k + r - 1)c_{k-1}\]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2}c_{k-1}\]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Method of Frobenius
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{2}{3} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

\[r = \frac{2}{3}, \quad c_0 = 1\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

\[r = \frac{2}{3}, \quad c_0 = 1\]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1}\]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{2}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3}\right) 3 \left(k + \frac{2}{3} - 1\right) + 2} c_{k-1} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3}, \ c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3} \right) 3 \left(k + \frac{2}{3} - 1 \right) + 2} c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3} , \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3} \right) 3 \left(k + \frac{2}{3} - 1 \right) + 2} c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

\[r = \frac{2}{3}, \ c_0 = 1\]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3}\right) 3 \left(k + \frac{2}{3} - 1\right) + 2}c_{k-1}\]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2}c_{k-1} = \frac{1 - 3k}{9k^2 + 3k}c_{k-1}\]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1}c_{1-1}\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3}, \ c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3}\right) 3 \left(k + \frac{2}{3} - 1\right) + 2} c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1} \]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_{1-1} = -\frac{2}{12} \cdot 1 \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3} \right) 3 \left(k + \frac{2}{3} - 1 \right) + 2} c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1} \]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6} \]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{2}{3}, \ c_0 = 1$$

$$c_k = \frac{3 - 3k - 3r}{9(k+r)(k+r-1)+2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3(k+\frac{2}{3})3(k+\frac{2}{3}-1)+2}c_{k-1}$$

$$= \frac{1 - 3k}{(3k+2)(3k-1)+2}c_{k-1} = \frac{1 - 3k}{9k^2+3k}c_{k-1}$$

$$c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2+3 \cdot 1}c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6}$$

$$c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2+3 \cdot 2}c_{2-1}$$
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3} \right) 3 \left(k + \frac{2}{3} - 1 \right) + 2}c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2}c_{k-1} = \frac{1 - 3k}{9k^2 + 3k}c_{k-1} \]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1}c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6} \]

\[c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2 + 3 \cdot 2}c_{2-1} = -\frac{5}{42} \left(-\frac{1}{6} \right) \]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{2}{3}, \quad c_0 = 1$$

$$c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3(k + \frac{2}{3}) 3(k + \frac{2}{3} - 1) + 2} c_{k-1}$$

$$= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1}$$

$$c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6}$$

$$c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2 + 3 \cdot 2} c_{2-1} = -\frac{5}{42} \left(-\frac{1}{6}\right) = \frac{5}{252}$$
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{2}{3}, \quad c_0 = 1$$

$$c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3}\right) 3 \left(k + \frac{2}{3} - 1\right) + 2} c_{k-1}$$

$$= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1}$$

$$c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6}$$

$$c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2 + 3 \cdot 2} c_{2-1} = -\frac{5}{42} \left(-\frac{1}{6}\right) = \frac{5}{252}$$

$$c_3 = \frac{1 - 3 \cdot 3}{9 \cdot 3^2 + 3 \cdot 3} c_{3-1}$$
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{2}{3}, \ c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_k^{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3 \left(k + \frac{2}{3} \right) 3 \left(k + \frac{2}{3} - 1 \right) + 2} c_k^{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_k^{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_k^{k-1} \]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_1^{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6} \]

\[c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2 + 3 \cdot 2} c_2^{2-1} = -\frac{5}{42} \left(-\frac{1}{6} \right) = \frac{5}{252} \]

\[c_3 = \frac{1 - 3 \cdot 3}{9 \cdot 3^2 + 3 \cdot 3} c_3^{3-1} = -\frac{8}{90} \cdot \frac{5}{252} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3}, \; c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{2}{3}}{3(k + \frac{2}{3}) 3 \left(k + \frac{2}{3} - 1\right) + 2} c_{k-1} \]

\[= \frac{1 - 3k}{(3k + 2)(3k - 1) + 2} c_{k-1} = \frac{1 - 3k}{9k^2 + 3k} c_{k-1} \]

\[c_1 = \frac{1 - 3 \cdot 1}{9 \cdot 1^2 + 3 \cdot 1} c_{1-1} = -\frac{2}{12} \cdot 1 = -\frac{1}{6} \]

\[c_2 = \frac{1 - 3 \cdot 2}{9 \cdot 2^2 + 3 \cdot 2} c_{2-1} = -\frac{5}{42} \left(-\frac{1}{6}\right) = \frac{5}{252} \]

\[c_3 = \frac{1 - 3 \cdot 3}{9 \cdot 3^2 + 3 \cdot 3} c_{3-1} = -\frac{8}{90} \frac{5}{252} = -\frac{1}{567} \]
Solve the Differential Equation

$$9x^2 y'' + 3x^2 y' + 2y = 0$$

$$r = \frac{2}{3}$$

$$c_4 = \frac{1 - 3 \cdot 4}{9 \cdot 4^2 + 3 \cdot 4} c_4 - 1$$
Solve the Differential Equation
\[9x^2 y'' + 3x^2 y' + 2y = 0\]

\[r = \frac{2}{3}\]

\[c_4 = \frac{1 - 3 \cdot 4}{9 \cdot 4^2 + 3 \cdot 4} c_4 - 1 = -\frac{11}{156} \left(-\frac{1}{567}\right)\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{2}{3} \]

\[c_4 = \frac{1 - 3 \cdot 4}{9 \cdot 4^2 + 3 \cdot 4}c_{4-1} = -\frac{11}{156} \left(-\frac{1}{567} \right) = \frac{11}{88452} \]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{2}{3}$$

$$c_4 = \frac{1 - 3 \cdot 4}{9 \cdot 4^2 + 3 \cdot 4} c_{4-1} = -\frac{11}{156} \left(-\frac{1}{567} \right) = \frac{11}{88452}$$

$$y_1 = x^\frac{2}{3} - \frac{1}{6} x^\frac{2}{3} + 1 + \frac{5}{252} x^\frac{2}{3} + 2 - \frac{1}{567} x^\frac{2}{3} + 3 + \frac{11}{88452} x^\frac{2}{3} + 4$$
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{2}{3}$$

$$c_4 = \frac{1 - 3 \cdot 4}{9 \cdot 4^2 + 3 \cdot 4} c_4 - 1 = -\frac{11}{156} \left(-\frac{1}{567} \right) = \frac{11}{88452}$$

$$y_1 = x^3 - \frac{1}{6} x^3 + \frac{5}{252} x^3 + 2 - \frac{1}{567} x^3 + 3 + \frac{11}{88452} x^3 + 4$$

$$= x^3 - \frac{1}{6} x^3 + \frac{5}{252} x^3 - \frac{1}{567} x^\frac{11}{3} + \frac{11}{88452} x^\frac{14}{3}$$
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{1}{3} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3}, \ c_0 = 1 \]
Solve the Differential Equation
\[9x^2 y'' + 3x^2 y' + 2y = 0 \]
\[
r = \frac{1}{3}, \ c_0 = 1
\]
\[
c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1}
\]
Solve the Differential Equation

\(9x^2y'' + 3x^2y' + 2y = 0\)

\(r = \frac{1}{3}, c_0 = 1\)

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3(k + \frac{1}{3}) 3(k + \frac{1}{3} - 1) + 2} c_{k-1}\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3} \right) 3 \left(k + \frac{1}{3} - 1 \right) + 2} c_{k-1} \]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} \]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{1}{3}, \ c_0 = 1$$

$$c_k = \frac{3 - 3k - 3r}{9(k+r)(k+r-1)+2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3} \right) 3 \left(k + \frac{1}{3} - 1 \right) + 2}c_{k-1}$$

$$= \frac{2 - 3k}{(3k+1)(3k-2)+2}c_{k-1} = \frac{2 - 3k}{9k^2 - 3k}c_{k-1}$$
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

\[r = \frac{1}{3}, \ c_0 = 1\]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3} \right) 3 \left(k + \frac{1}{3} - 1 \right) + 2} c_{k-1}\]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} = \frac{2 - 3k}{9k^2 - 3k} c_{k-1}\]

\[c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1} c_{1-1}\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3} \], \(c_0 = 1 \)

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3(k + \frac{1}{3}) 3(k + \frac{1}{3} - 1) + 2} c_{k-1} \]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} = \frac{2 - 3k}{9k^2 - 3k} c_{k-1} \]

\[c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1} c_{1-1} = -\frac{1}{6} \]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{1}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3} \right) 3 \left(k + \frac{1}{3} - 1 \right) + 2} c_{k-1} \]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} = \frac{2 - 3k}{9k^2 - 3k} c_{k-1} \]

\[c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1} c_1 - 1 = \frac{1}{6} \]

\[c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2} c_{2-1} \]
Solve the Differential Equation

$$9x^2 y'' + 3x^2 y' + 2y = 0$$

$$r = \frac{1}{3}, c_0 = 1$$

$$c_k = \frac{3 - 3k - 3r}{9(k+r)(k+r-1) + 2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3(k + \frac{1}{3}) 3(k + \frac{1}{3} - 1) + 2}c_{k-1}$$

$$= \frac{2 - 3k}{(3k+1)(3k-2) + 2}c_{k-1} = \frac{2 - 3k}{9k^2 - 3k}c_{k-1}$$

$$c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1}c_{1-1} = -\frac{1}{6}$$

$$c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2}c_{2-1} = -\frac{4}{30} \left(-\frac{1}{6} \right)$$
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3}, \quad c_0 = 1 \]

\[
 c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3}\right) 3 \left(k + \frac{1}{3} - 1\right) + 2} c_{k-1} \\
 = \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} = \frac{2 - 3k}{9k^2 - 3k} c_{k-1} \\
 c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1} c_{1-1} = -\frac{1}{6} \\
 c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2} c_{2-1} = -\frac{4}{30} \left(-\frac{1}{6}\right) = \frac{1}{45} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3}, \quad c_0 = 1 \]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2} c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3(k + \frac{1}{3})3(k + \frac{1}{3} - 1) + 2} c_{k-1} \]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2} c_{k-1} = \frac{2 - 3k}{9k^2 - 3k} c_{k-1} \]

\[c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1} c_{1-1} = -\frac{1}{6} \]

\[c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2} c_{2-1} = -\frac{4}{30} \left(-\frac{1}{6} \right) = \frac{1}{45} \]

\[c_3 = \frac{2 - 3 \cdot 3}{9 \cdot 3^2 - 3 \cdot 3} c_{3-1} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0\]

\[r = \frac{1}{3}, \ c_0 = 1\]

\[c_k = \frac{3 - 3k - 3r}{9(k + r)(k + r - 1) + 2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3 \left(k + \frac{1}{3}\right) 3 \left(k + \frac{1}{3} - 1\right) + 2}c_{k-1}\]

\[= \frac{2 - 3k}{(3k + 1)(3k - 2) + 2}c_{k-1} = \frac{2 - 3k}{9k^2 - 3k}c_{k-1}\]

\[c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1}c_{1-1} = -\frac{1}{6}\]

\[c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2}c_{2-1} = -\frac{4}{30} \left(-\frac{1}{6}\right) = \frac{1}{45}\]

\[c_3 = \frac{2 - 3 \cdot 3}{9 \cdot 3^2 - 3 \cdot 3}c_{3-1} = -\frac{7}{72} \frac{1}{45}\]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3}, \; c_0 = 1 \]

\[
c_k = \frac{3 - 3k - 3r}{9(k+r)(k+r-1)+2}c_{k-1} = \frac{3 - 3k - 3 \cdot \frac{1}{3}}{3(k+\frac{1}{3})3(k+\frac{1}{3}-1)+2}c_{k-1}
\]

\[
= \frac{2 - 3k}{(3k+1)(3k-2)+2}c_{k-1} = \frac{2 - 3k}{9k^2 - 3k}c_{k-1}
\]

\[
c_1 = \frac{2 - 3 \cdot 1}{9 \cdot 1^2 - 3 \cdot 1}c_{1-1} = -\frac{1}{6}
\]

\[
c_2 = \frac{2 - 3 \cdot 2}{9 \cdot 2^2 - 3 \cdot 2}c_{2-1} = -\frac{4}{30} \left(-\frac{1}{6} \right) = \frac{1}{45}
\]

\[
c_3 = \frac{2 - 3 \cdot 3}{9 \cdot 3^2 - 3 \cdot 3}c_{3-1} = -\frac{7 \cdot 1}{72 \cdot 45} = -\frac{7}{3240}
\]
Solve the Differential Equation

$$9x^2y'' + 3x^2y' + 2y = 0$$

$$r = \frac{1}{3}$$

$$c_4 = \frac{2 - 3 \cdot 4}{9 \cdot 4^2 - 3 \cdot 4} c_4 - 1$$
Solve the Differential Equation
\[9x^2 y'' + 3x^2 y' + 2y = 0 \]
\[r = \frac{1}{3} \]
\[c_4 = \frac{2 - 3 \cdot 4}{9 \cdot 4^2 - 3 \cdot 4} c_{4-1} = -\frac{10}{132} \left(-\frac{7}{3240} \right) \]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{1}{3} \]

\[c_4 = \frac{2 - 3 \cdot 4}{9 \cdot 4^2 - 3 \cdot 4} c_{4-1} = -\frac{10}{132} \left(-\frac{7}{3240} \right) = \frac{7}{42768} \]
Solve the Differential Equation

\[9x^2 y'' + 3x^2 y' + 2y = 0 \]

\[r = \frac{1}{3} \]

\[c_4 = \frac{2 - 3 \cdot 4}{9 \cdot 4^2 - 3 \cdot 4} c_{4-1} = -\frac{10}{132} \left(-\frac{7}{3240} \right) = \frac{7}{42768} \]

\[y_2 = x^{\frac{1}{3}} - \frac{1}{6} x^{\frac{1}{3}+1} + \frac{1}{45} x^{\frac{1}{3}+2} - \frac{7}{3240} x^{\frac{1}{3}+3} + \frac{7}{42768} x^{\frac{1}{3}+4} \]
Solve the Differential Equation

\[9x^2y'' + 3x^2y' + 2y = 0 \]

\[r = \frac{1}{3} \]

\[c_4 = \frac{2 - 3 \cdot 4}{9 \cdot 4^2 - 3 \cdot 4} c_{4-1} = -\frac{10}{132} \left(-\frac{7}{3240} \right) = \frac{7}{42768} \]

\[y_2 = x^{\frac{1}{3}} - \frac{1}{6} x^{\frac{1}{3}+1} + \frac{1}{45} x^{\frac{1}{3}+2} - \frac{7}{3240} x^{\frac{1}{3}+3} + \frac{7}{42768} x^{\frac{1}{3}+4} \]

\[y_2 = x^{\frac{1}{3}} - \frac{1}{6} x^{\frac{4}{3}} + \frac{1}{45} x^{\frac{7}{3}} - \frac{7}{3240} x^{\frac{10}{3}} + \frac{7}{42768} x^{\frac{13}{3}} \]
Checking Solutions When Only The First Few Terms are Available
Checking Solutions When Only The First Few Terms are Available

As for series solutions, because the “solution” is a truncated series, we cannot expect that the differential equation is exactly satisfied.
Checking Solutions When Only The First Few Terms are Available

As for series solutions, because the “solution” is a truncated series, we cannot expect that the differential equation is exactly satisfied.

\[
y_1(x) := x^3 - \frac{1}{6}x^3 + \frac{5}{252}x^3 - \frac{1}{567}x^3 + \frac{11}{88452}x^3
\]
Checking Solutions When Only The First Few Terms are Available

As for series solutions, because the “solution” is a truncated series, we cannot expect that the differential equation is exactly satisfied.

\[
y_1(x) := x^3 - \frac{1}{6} x^3 + \frac{5}{252} x^3 - \frac{1}{567} x^3 + \frac{11}{88452} x^3
\]

\[
9 \cdot x^2 \frac{d^2 y_1(x)}{dx^2} + 3 \cdot x \frac{d y_1(x)}{dx} + 2 \cdot y_1(x) \text{ collect, } x \rightarrow \frac{11}{6318} x^3
\]
Checking Solutions When Only The First Few Terms are Available

As for series solutions, because the “solution” is a truncated series, we cannot expect that the differential equation is exactly satisfied.

\[
y_1(x) := x^2 - \frac{1}{6} \cdot x^3 + \frac{5}{252} \cdot x^3 - \frac{1}{567} \cdot x^3 + \frac{11}{88452} x^3
\]

\[
y_2(x) := x^3 - \frac{1}{6} \cdot x^3 + \frac{1}{45} \cdot x^3 - \frac{7}{3240} \cdot x^3 + \frac{7}{42768} x^3
\]

\[
9 \cdot x^2 \cdot \frac{d^2}{dx^2} y_1(x) + 3 \cdot x \cdot \frac{d}{dx} y_1(x) + 2 \cdot y_1(x) \text{ collect, } x \to \frac{11}{6318} \cdot x^3
\]
Checking Solutions When Only The First Few Terms are Available

As for series solutions, because the “solution” is a truncated series, we cannot expect that the differential equation is exactly satisfied.

\[
y_1(x) := x^2 - \frac{1}{3}x^3 + \frac{5}{252}x^3 - \frac{1}{567}x^3 + \frac{11}{88452}x^3
\]

\[
9 \cdot x^2 \frac{d^2}{dx^2}y_1(x) + 3 \cdot x \frac{d}{dx}y_1(x) + 2 \cdot y_1(x) \text{ collect, } x \to \frac{17}{6318}x^3
\]

\[
y_2(x) := x^3 - \frac{1}{3}x^3 + \frac{1}{45}x^3 - \frac{7}{3240}x^3 + \frac{7}{42768}x^3
\]

\[
9 \cdot x^2 \frac{d^2}{dx^2}y_2(x) + 3 \cdot x \frac{d}{dx}y_2(x) + 2 \cdot y_2(x) \text{ collect, } x \to \frac{16}{42768}x^3
\]
Checking Solutions When Only The First Few Terms are Available

As before, for a correct approximation, low order terms should cancel.
Checking Solutions When Only The First Few Terms are Available

As before, for a correct approximation, low order terms should cancel.

We went to order $\frac{14}{3}$ for the first solution and to order $\frac{13}{3}$ for the second solution.
Checking Solutions When Only The First Few Terms are Available

As before, for a correct approximation, low order terms should cancel.

We went to order $\frac{14}{3}$ for the first solution and to order $\frac{13}{3}$ for the second solution.
And, of course, we use a computer algebra system.