The Differential Equation for a Vibrating String

Bernd Schröder
Modeling Assumptions

1. The string is made up of individual particles that move vertically.
2. \(u(x, t) \) is the vertical displacement from equilibrium of the particle at horizontal position \(x \) and at time \(t \).
 - \(u > 0 \)
 - \(u < 0 \)
 - \(u = 0 \)
Modeling Assumptions

1. The string is made up of individual particles that move vertically.
Modeling Assumptions

1. The string is made up of individual particles that move vertically.
2. $u(x,t)$ is the vertical displacement from equilibrium of the particle at horizontal position x and at time t.
Modeling Assumptions

1. The string is made up of individual particles that move vertically.
2. $u(x, t)$ is the vertical displacement from equilibrium of the particle at horizontal position x and at time t.

\[u > 0 \quad u = 0 \quad u < 0 \]
Decomposing the Tensile Force
Decomposing the Tensile Force
Decomposing the Tensile Force

The Differential Equation for a Vibrating String
Decomposing the Tensile Force

\[\vec{F}_t \]

\[x \]
Decomposing the Tensile Force

\(\vec{F}_t \)
Decomposing the Tensile Force

\[\vec{F}_v \]
\[\vec{F}_t \]

\[x \]
Decomposing the Tensile Force

\[
\vec{F}_v + \alpha \vec{F}_t
\]
Decomposing the Tensile Force

\[\vec{F}_v \]

\[\vec{F}_t \]

\[\alpha \]

\[x \]

\[x + \Delta x \]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Differential Equation for a Vibrating String
Decomposing the Tensile Force

\[
\vec{F}_v + \vec{F}_t = \vec{F}_t
\]

\[
\alpha \:\vec{F}_v + \vec{F}_t = \vec{F}_t
\]

\[
\alpha \vec{F}_v = \vec{0}
\]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

The Differential Equation for a Vibrating String
Decomposing the Tensile Force

The Differential Equation for a Vibrating String

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Decomposing the Tensile Force

\[\vec{F}_v \]
\[\vec{F}_t \]
\[x \]
\[x + \Delta x \]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
The Differential Equation for a Vibrating String
Decomposing the Tensile Force

\[\vec{F}_v(x) \approx \vec{F}_v(x + \Delta x) - \vec{F}_v(x) \]

\[F(x) = F_v(x + \Delta x) - F_v(x) \]

\[\vec{F}_v \]

\[\vec{F}_t \]

\[\alpha \]

\[\alpha \hat{\alpha} \]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

The Differential Equation for a Vibrating String
Decomposing the Tensile Force

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) = F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \]

\[0.25 \approx 14.3^\circ \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad \left(\sin(\theta) \approx \tan(\theta), \theta \text{ small} \right) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad \text{(sin(\theta) \approx tan(\theta), \theta small)} \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad \text{(sin(\theta) \approx \tan(\theta), \theta \, small)} \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]
\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]
\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]
\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]
\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \]
The Vertical Force at a Point

\[
F(x) \approx F_v(x + \Delta x) - F_v(x)
\]

\[
= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small})
\]

\[
\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x))
\]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x)) \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x)) \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \quad (f(x + \Delta x) \approx f(x) + f'(x) \Delta x) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x)) \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \quad (f(x + \Delta x) \approx f(x) + f'(x)\Delta x) \]

\[\approx F_t \left(\right) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x)) \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \quad (f(x + \Delta x) \approx f(x) + f'(x)\Delta x) \]

\[\approx F_t \left(\frac{d}{dx} u(x) + \Delta x \cdot \frac{d^2}{dx^2} u(x) \right) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad (\sin(\theta) \approx \tan(\theta), \theta \text{ small}) \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad (\tan(\theta) = f'(x)) \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \quad (f(x + \Delta x) \approx f(x) + f'(x)\Delta x) \]

\[\approx F_t \left(\frac{d}{dx} u(x) + \Delta x \cdot \frac{d^2}{dx^2} u(x) - \frac{d}{dx} u(x) \right) \]
The Vertical Force at a Point

\[F(x) \approx F_v(x + \Delta x) - F_v(x) \]

\[= F_t \sin(\tilde{\alpha}) - F_t \sin(\alpha) \quad \text{\(\sin(\theta) \approx \tan(\theta), \theta \) small} \]

\[\approx F_t \tan(\tilde{\alpha}) - F_t \tan(\alpha) \quad \text{\(\tan(\theta) = f'(x) \)} \]

\[= F_t \left(\frac{d}{dx} u(x + \Delta x) - \frac{d}{dx} u(x) \right) \quad \text{\(f(x + \Delta x) \approx f(x) + f'(x)\Delta x \)} \]

\[\approx F_t \left(\frac{d}{dx} u(x) + \Delta x \cdot \frac{d^2}{dx^2} u(x) - \frac{d}{dx} u(x) \right) \]

\[= F_t \Delta x \frac{d^2}{dx^2} u(x) \]
Using Newton’s Second Law

The Differential Equation for a Vibrating String

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Using Newton’s Second Law

\[ma \]
Using Newton’s Second Law

\[ma = F(x) \]
Using Newton’s Second Law

\[ma = F(x) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]
Using Newton’s Second Law

\[ma = F(x) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]

\[\rho_l \Delta x \]
Using Newton’s Second Law

\[ma = F(x) = F_{t\Delta x} \frac{\partial^2}{\partial x^2} u(x, t) \]

\[\rho_{l\Delta x} \frac{\partial^2}{\partial t^2} u(x, t) \]
Using Newton’s Second Law

\[ma = F(x) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]

\[\rho \Delta x \frac{\partial^2}{\partial t^2} u(x, t) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]
Using Newton’s Second Law

\[ma = F(x) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]

\[\rho_l \Delta x \frac{\partial^2}{\partial t^2} u(x, t) = F_t \Delta x \frac{\partial^2}{\partial x^2} u(x, t) \]

\[\frac{\rho_l}{F_t} \frac{\partial^2}{\partial t^2} u(x, t) = \frac{\partial^2}{\partial x^2} u(x, t) \]
The One-Dimensional Wave Equation

The equation of motion for small oscillations of a frictionless string is

$$\frac{\partial^2}{\partial x^2} u(x, t) = k \frac{\partial^2}{\partial t^2} u(x, t),$$

where $k = \frac{\rho l F_t}{\rho l} > 0$, with ρl being the linear density of the string and F_t being the tensile force. This equation is also called the one-dimensional wave equation. Our derivation is valid for small oscillations and negligible friction.

The cancellation of the Δx was "clean".
The One-Dimensional Wave Equation

The equation of motion for small oscillations of a frictionless string is

\[
\frac{\partial^2}{\partial x^2} u(x, t) = k \frac{\partial^2}{\partial t^2} u(x, t),
\]

where \(k = \frac{\rho_l}{F_t} > 0 \), with \(\rho_l \) being the linear density of the string and \(F_t \) being the tensile force.
The One-Dimensional Wave Equation

The equation of motion for small oscillations of a frictionless string is

$$\frac{\partial^2}{\partial x^2} u(x, t) = k \frac{\partial^2}{\partial t^2} u(x, t),$$

where $k = \frac{\rho_l}{F_t} > 0$, with ρ_l being the linear density of the string and F_t being the tensile force.

This equation is also called the one-dimensional wave equation.
The One-Dimensional Wave Equation

The equation of motion for small oscillations of a frictionless string is

$$\frac{\partial^2}{\partial x^2} u(x, t) = k \frac{\partial^2}{\partial t^2} u(x, t),$$

where $k = \frac{\rho_l}{F_t} > 0$, with ρ_l being the linear density of the string and F_t being the tensile force. This equation is also called the **one-dimensional wave equation**. Our derivation is valid for small oscillations and negligible friction.
The One-Dimensional Wave Equation

The equation of motion for small oscillations of a frictionless string is

$$\frac{\partial^2}{\partial x^2} u(x, t) = k \frac{\partial^2}{\partial t^2} u(x, t),$$

where $k = \frac{\rho_I}{F_t} > 0$, with ρ_I being the linear density of the string and F_t being the tensile force.

This equation is also called the one-dimensional wave equation.

Our derivation is valid for small oscillations and negligible friction.

The cancellation of the Δx was “clean”.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

The Differential Equation for a Vibrating String