Integral Theorems

Bernd Schröder
Introduction
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour \textit{and in} the contour.

2. The above is called the Cauchy-Goursat Theorem.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.
2. The above is called the Cauchy-Goursat Theorem.
3. We will start by analyzing integrals across closed contours a bit more carefully.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.

2. The above is called the Cauchy-Goursat Theorem.

3. We will start by analyzing integrals across closed contours a bit more carefully.

4. Then we will prove the Cauchy-Goursat Theorem.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.
2. The above is called the Cauchy-Goursat Theorem.
3. We will start by analyzing integrals across closed contours a bit more carefully.
4. Then we will prove the Cauchy-Goursat Theorem.
5. Then we will consider a few properties of domains that relate to the Cauchy-Goursat Theorem.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.
2. The above is called the Cauchy-Goursat Theorem.
3. We will start by analyzing integrals across closed contours a bit more carefully.
4. Then we will prove the Cauchy-Goursat Theorem.
5. Then we will consider a few properties of domains that relate to the Cauchy-Goursat Theorem.
6. The original motivation to investigate integrals over closed contours probably comes from considerations of potentials in physics.
Introduction

1. Much of the strength of complex analysis derives from the fact that the integral of an analytic function over a simple closed contour is zero, as long as the function is analytic on the contour and in the contour.

2. The above is called the Cauchy-Goursat Theorem.

3. We will start by analyzing integrals across closed contours a bit more carefully.

4. Then we will prove the Cauchy-Goursat Theorem.

5. Then we will consider a few properties of domains that relate to the Cauchy-Goursat Theorem.

6. The original motivation to investigate integrals over closed contours probably comes from considerations of potentials in physics. For potentials in physics, integrals over closed curves must be zero.
Theorem.

Let f be a continuous complex function on a domain D. The following are equivalent.

1. The function f has an antiderivative F on D. (That is, $F'(z) = f(z)$ for all z in D.)
2. The integrals of f over any contour C from z_1 to z_2 in D only depend on z_1 and z_2, but not on C itself.
3. For any closed contour in D we have that $\int_C f(z) \, dz = 0$.

In the above situation, if C is a contour from z_1 to z_2, then $\int_C f(z) \, dz = F(z_2) - F(z_1)$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Theorem. Let f be a continuous complex function on a domain D.

Theorem. Let f be a continuous complex function on a domain D. The following are equivalent.
Theorem. Let f be a continuous complex function on a domain D. The following are equivalent.

1. The function f has an antiderivative F on D.

2. The integrals of f over any contour C from z_1 to z_2 in D only depends on z_1 and z_2, but not on C itself.

3. For any closed contour in D we have that $\int_C f(z) \, dz = 0$.

In the above situation, if C is a contour from z_1 to z_2, then $\int_C f(z) \, dz = F(z_2) - F(z_1)$.

Theorem. Let \(f \) be a continuous complex function on a domain \(D \). The following are equivalent.

1. The function \(f \) has an antiderivative \(F \) on \(D \). (That is, \(F'(z) = f(z) \) for all \(z \) in \(D \).)
Theorem. Let f be a continuous complex function on a domain D. The following are equivalent.

1. The function f has an antiderivative F on D. (That is, $F'(z) = f(z)$ for all z in D.)

2. The integrals of f over any contour C from z_1 to z_2 in D only depends on z_1 and z_2, but not on C itself.
Theorem. Let f be a continuous complex function on a domain D. The following are equivalent.

1. The function f has an antiderivative F on D. (That is, $F'(z) = f(z)$ for all z in D.)

2. The integrals of f over any contour C from z_1 to z_2 in D only depends on z_1 and z_2, but not on C itself.

3. For any closed contour in D we have that $\int_C f(z) \, dz = 0$.
Theorem. Let f be a continuous complex function on a domain D. The following are equivalent.

1. The function f has an antiderivative F on D. (That is, $F'(z) = f(z)$ for all z in D.)

2. The integrals of f over any contour C from z_1 to z_2 in D only depends on z_1 and z_2, but not on C itself.

3. For any closed contour in D we have that $\int_C f(z) \, dz = 0$.

In the above situation, if C is a contour from z_1 to z_2, then $\int_C f(z) \, dz = F(z_2) - F(z_1)$.
Example.
Example. *The integral of any power function z^n with $n \neq -1$ being an integer around any closed contour in the domain of the power function is 0.*
Example. The integral of any power function z^n with $n \neq -1$ being an integer around any closed contour in the domain of the power function is 0.

An antiderivative of z^n is $\frac{1}{n+1}z^{n+1}$!
Example. The integral of any power function z^n with $n \neq -1$ being an integer around any closed contour in the domain of the power function is 0.

An antiderivative of z^n is $\frac{1}{n+1}z^{n+1}$!

(Also see earlier presentation for the direct computation for the unit circle.)
Example.

The integral of the function z^{-1} around the unit circle is $2\pi i$. It's tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it's not possible, that's why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero. Also recall $\int_C z^{-1} \, dz = \int_{0}^{2\pi} (e^{it})^{-1} i e^{it} \, dt = \int_{0}^{2\pi} i \, dt = 2\pi i$. The logarithm is an antiderivative of z^{-1} on any subset of the complex numbers from which an appropriate branch cut has been removed, though.
Example. The integral of the function z^{-1} around the unit circle is $2\pi i$.
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(\cdot)$.
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}.
Example. *The integral of the function* z^{-1} *around the unit circle is* $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero
Example. *The integral of the function* z^{-1} *around the unit circle is* $2\pi i$.

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible
Example. The integral of the function z^{-1} around the unit circle is $2\pi i$.

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches).
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero.
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall

$$\int_C z^{-1} \, dz$$
Example. \textit{The integral of the function }z^{-1}\textit{ around the unit circle is }$2\pi i(?)$\textit{.}

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is \textbf{not} an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall

\[
\int_C z^{-1} \, dz = \int_0^{2\pi} (e^{it})^{-1} ie^{it} \, dt
\]
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall

$$
\int_C z^{-1} \, dz = \int_0^{2\pi} (e^{it})^{-1} ie^{it} \, dt
$$

$$
= \int_0^{2\pi} i \, dt
$$
Example. *The integral of the function* z^{-1} *around the unit circle is* $2\pi i(?)$

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is **not** an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall

$$
\int_C z^{-1} \, dz = \int_0^{2\pi} \left(e^{i\theta} \right)^{-1} ie^{i\theta} \, d\theta \\
= \int_0^{2\pi} i \, d\theta = 2\pi i
$$
Example. The integral of the function z^{-1} around the unit circle is $2\pi i(?)$.

It’s tempting to declare the logarithm an antiderivative of z^{-1}. But because of the problems with defining a logarithm function on a deleted neighborhood of zero (it’s not possible, that’s why we work with branches), the logarithm is not an antiderivative of z^{-1} on any deleted neighborhood of zero.

Also recall

$$\int_C z^{-1} \, dz = \int_0^{2\pi} (e^{it})^{-1} i e^{it} \, dt$$

$$= \int_0^{2\pi} i \, dt = 2\pi i$$

The logarithm is an antiderivative of z^{-1} on any subset of the complex numbers from which an appropriate branch cut has been removed, though.
Proof ("1⇒3").
Proof (”1⇒3”). If F is an antiderivative of f and C is a closed contour from $z(a)$ to $z(b) = z(a)$, then

$$\int_C f(z) \, dz$$
Proof ("1⇒3"). If F is an antiderivative of f and C is a closed contour from $z(a)$ to $z(b) = z(a)$, then

\[
\int_C f(z) \, dz = F(z(b)) - F(z(a))
\]
Proof (”1⇒3”). If F is an antiderivative of f and C is a closed contour from $z(a)$ to $z(b) = z(a)$, then

$$\int_C f(z) \, dz = F(z(b)) - F(z(a))$$

$$= F(z(a)) - F(z(a))$$
Proof ("1⇒3"). If F is an antiderivative of f and C is a closed contour from $z(a)$ to $z(b) = z(a)$, then

$$
\int_C f(z) \, dz = F(z(b)) - F(z(a))
$$

$$
= F(z(a)) - F(z(a)) = 0
$$
Proof ("3⇒2").
Proof (“3⇒2”). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$.

Note that $C := C_1 + (-C_2)$ is a closed contour.

$$0 = \int_{C} f(z) \, dz = \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz$$

Thus the integrals along any contour from z_1 to z_2 all have the same value, which means that, for arbitrary z_1 and z_2, the integral only depends on z_1 and z_2, not on the path we take from one point to the other.
Proof ("3⇒2"). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.
Proof ("3⇒2"). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

$$0 = \int_C f(z) \, dz$$
Proof ("3⇒2"). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that
$C := C^1 + (-C^2)$ is a closed contour.

\[0 = \oint_C f(z) \, dz = \int_{C^1 + (-C^2)} f(z) \, dz \]
Proof (‘‘3 ⇒ 2’’). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

\[
0 = \int_C f(z) \, dz = \int_{C^1 + (-C^2)} f(z) \, dz = \int_{C^1} f(z) \, dz.
\]
Proof ("3⇒2"). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

$$0 = \int_C f(z) \, dz$$

$$= \int_{C^1 + (-C^2)} f(z) \, dz$$

$$= \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz$$
Proof (“3⇒2”). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

$$0 = \int_C f(z) \, dz$$

$$= \int_{C^1 + (-C^2)} f(z) \, dz$$

$$= \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz$$

$$\int_{C^1} f(z) \, dz = \int_{C^2} f(z) \, dz$$
Proof ("3⇒2"). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

\[
0 = \int_C f(z) \, dz = \int_{C^1 + (-C^2)} f(z) \, dz = \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz \]

\[
\int_{C^1} f(z) \, dz = \int_{C^2} f(z) \, dz
\]

Thus the integrals along any contour from z_1 to z_2 all have the same value.
Proof ("3⇒2"). Let \(C^1 \) and \(C^2 \) be two contours from \(z_1 = z^1(a_1) = z^2(a_2) \) to \(z_2 = z^1(b_1) = z^2(b_2) \). Note that \(C := C^1 + (-C^2) \) is a closed contour.

\[
0 = \int_C f(z) \, dz = \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz
\]

Thus the integrals along any contour from \(z_1 \) to \(z_2 \) all have the same value, which means that, for arbitrary \(z_1 \) and \(z_2 \),
Proof (‘‘3⇒2’’). Let C^1 and C^2 be two contours from $z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that $C := C^1 + (-C^2)$ is a closed contour.

$$0 = \int_C f(z) \, dz = \int_{C^1 + (-C^2)} f(z) \, dz = \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz$$

Thus the integrals along any contour from z_1 to z_2 all have the same value, which means that, for arbitrary z_1 and z_2, the integral only depends on z_1 and z_2.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Integral Theorems
Proof (“3⇒2”). Let C^1 and C^2 be two contours from
$z_1 = z^1(a_1) = z^2(a_2)$ to $z_2 = z^1(b_1) = z^2(b_2)$. Note that
$C := C^1 + (-C^2)$ is a closed contour.

$$0 = \int_C f(z) \, dz$$

$$= \int_{C^1 + (-C^2)} f(z) \, dz$$

$$= \int_{C^1} f(z) \, dz - \int_{C^2} f(z) \, dz$$

$$\int_{C^1} f(z) \, dz = \int_{C^2} f(z) \, dz$$

Thus the integrals along any contour from z_1 to z_2 all have the same value, which means that, for arbitrary z_1 and z_2, the integral only depends on z_1 and z_2, not on the path we take from one point to the other.
Proof ("2⇒1").
Proof ("2⇒1"). Fix a point z_0 in D.
Proof ("2⇒1"). Fix a point z_0 in D. For z in D
Proof (”2\Rightarrow1”). Fix a point z_0 in D. For z in D (recall that D is connected)
Proof ("2⇒1"). Fix a point \(z_0 \) in \(D \). For \(z \) in \(D \) (recall that \(D \) is connected) define \(F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma \).
Proof ("2⇒1"). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour
Proof (“2⇒1”). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line.
Proof ("2⇒1"). Fix a point \(z_0 \) in \(D \). For \(z \) in \(D \) (recall that \(D \) is connected) define \(F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma \). Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that \(F' = f \).
Proof ("2⇒1"). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.
Proof ("2⇒1"). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

\[
\lim_{w \to z} \frac{F(w) - F(z)}{w - z}
\]
Proof ("2⇒1"). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

$$
\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)
$$
Proof (‘‘2⇒1’’). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

$$\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)$$

$$= \lim_{w \to z} \frac{1}{w - z} \int_{z}^{w} f(\gamma) \, d\gamma$$
Proof ("2⇒1"). Fix a point \(z_0 \) in \(D \). For \(z \) in \(D \) (recall that \(D \) is connected) define \(F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma \). Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that \(F' = f \). Let \(z \) be in \(D \).

\[
\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)
\]

\[
= \lim_{w \to z} \frac{1}{w - z} \int_{z}^{w} f(\gamma) \, d\gamma = f(z)
\]
Proof (“2⇒1”). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

$$\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)$$

$$= \lim_{w \to z} \frac{1}{w - z} \int_{z}^{w} f(\gamma) \, d\gamma = f(z)$$

because, with the contour from z to w chosen to be a straight line
Proof (“2⇒1”). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

$$
\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)
$$

$$
= \lim_{w \to z} \frac{1}{w - z} \int_{z}^{w} f(\gamma) \, d\gamma = f(z)
$$

because, with the contour from z to w chosen to be a straight line, as $w \to z$, the values $f(\gamma)$ are close to $f(z)$.
Proof ("2⇒1"). Fix a point z_0 in D. For z in D (recall that D is connected) define $F(z) := \int_{z_0}^{z} f(\gamma) \, d\gamma$. Because the integral only depends on the endpoints, we need not specify the contour, and in this case it is common to use notation that is similar to that for integrals over intervals on the real line. We claim that $F' = f$. Let z be in D.

$$\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = \lim_{w \to z} \frac{1}{w - z} \left(\int_{z_0}^{w} f(\gamma) \, d\gamma - \int_{z_0}^{z} f(\gamma) \, d\gamma \right)$$

$$= \lim_{w \to z} \frac{1}{w - z} \int_{z}^{w} f(\gamma) \, d\gamma = f(z)$$

because, with the contour from z to w chosen to be a straight line, as $w \to z$, the values $f(\gamma)$ are close to $f(z)$, so that the integral is close ("and in the limit equal") to $f(z)(w - z)$.
Proof (finish).
Proof (finish). Finally, the claimed equation follows from a result from a previous presentation.
Proof (finish). Finally, the claimed equation follows from a result from a previous presentation.
Theorem.
Theorem. Let C be a simple closed contour and let f be a complex function that is analytic on a domain that contains C and the interior of C.
Theorem. Let C be a simple closed contour and let f be a complex function that is analytic on a domain that contains C and the interior of C. Then $\int_C f(z) \, dz = 0$.
Theorem. Let C be a simple closed contour and let f be a complex function that is analytic on a domain that contains C and the interior of C. Then $\int_C f(z) \, dz = 0$.
Theorem. Let C be a simple closed contour and let f be a complex function that is analytic on a domain that contains C and the interior of C. Then $\int_C f(z) \, dz = 0$.
Theorem. Let C be a simple closed contour and let f be a complex function that is analytic on a domain that contains C and the interior of C. Then $\int_C f(z) \, dz = 0$.
Proof.
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c.
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a.
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$.
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}, m_{bc} := \frac{b + c}{2}$.
Proof. For three complex numbers \(a, b, c \) let \(\Delta(a, b, c) \) be the triangle with vertices \(a, b, c \). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a \) to \(b \) to \(c \) and back to \(a \). Denote the midpoints \(m_{ab} := \dfrac{a + b}{2} \), \(m_{bc} := \dfrac{b + c}{2} \), and \(m_{ca} := \dfrac{c + a}{2} \).
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a+b}{2}$, $m_{bc} := \frac{b+c}{2}$, and $m_{ca} := \frac{c+a}{2}$. Then
Proof. For three complex numbers \(a, b, c \) let \(\triangle(a, b, c) \) be the triangle with vertices \(a, b, c \). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a \) to \(b \) to \(c \) and back to \(a \). Denote the midpoints \(m_{ab} := \frac{a + b}{2}, m_{bc} := \frac{b + c}{2}, \) and \(m_{ca} := \frac{c + a}{2} \). Then

\[
\int_{[a, b, c, a]} f(z) \, dz = \int_{[a, m_{ab}, m_{ca}, a]} f(z) \, dz + \int_{[b, m_{bc}, m_{ab}, b]} f(z) \, dz + \int_{[c, m_{ca}, m_{bc}, c]} f(z) \, dz + \int_{[m_{ab}, m_{bc}, m_{ca}, m_{ab}]} f(z) \, dz.
\]
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}, m_{bc} := \frac{b + c}{2},$ and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers \(a, b, c \) let \(\Delta(a, b, c) \) be the triangle with vertices \(a, b, c \). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a \) to \(b \) to \(c \) and back to \(a \). Denote the midpoints \(m_{ab} := \frac{a + b}{2}, m_{bc} := \frac{b + c}{2}, \) and \(m_{ca} := \frac{c + a}{2} \). Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers \(a, b, c\) let \(\Delta(a, b, c)\) be the triangle with vertices \(a, b, c\). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a\) to \(b\) to \(c\) and back to \(a\). Denote the midpoints \(m_{ab} := \frac{a + b}{2}\), \(m_{bc} := \frac{b + c}{2}\), and \(m_{ca} := \frac{c + a}{2}\). Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers \(a, b, c \) let \(\Delta(a, b, c) \) be the triangle with vertices \(a, b, c \). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a \) to \(b \) to \(c \) and back to \(a \). Denote the midpoints \(m_{ab} := \frac{a + b}{2} \), \(m_{bc} := \frac{b + c}{2} \), and \(m_{ca} := \frac{c + a}{2} \). Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},b,m_{bc},c,m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},a]} f(z) \, dz + \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz.
\]
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then

\[
\int_{[a, b, c, a]} f(z) \, dz = \int_{[a, m_{ab}, m_{ca}, a]} f(z) \, dz
\]
Proof. For three complex numbers \(a, b, c\) let \(\Delta(a, b, c)\) be the triangle with vertices \(a, b, c\). Let \([a, b, c, a]\) denote the curve that traverses the sides of the triangle from \(a\) to \(b\) to \(c\) and back to \(a\). Denote the midpoints \(m_{ab} := \frac{a + b}{2}\), \(m_{bc} := \frac{b + c}{2}\), and \(m_{ca} := \frac{c + a}{2}\). Then

\[
\int_{[a, b, c, a]} f(z) \, dz = \int_{[a, m_{ab}, m_{ca}, a]} f(z) \, dz + \int_{[b, m_{bc}, m_{ab}, b]} f(z) \, dz
\]
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz + \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz
\]
Proof. For three complex numbers a, b, c let $\Delta(a, b, c)$ be the triangle with vertices a, b, c. Let $[a, b, c, a]$ denote the curve that traverses the sides of the triangle from a to b to c and back to a. Denote the midpoints $m_{ab} := \frac{a + b}{2}$, $m_{bc} := \frac{b + c}{2}$, and $m_{ca} := \frac{c + a}{2}$. Then

\[\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \]
\[+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz. \]
Proof.
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz
\]
\[
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz \quad = \quad \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \\
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]

implies that the absolute value of one of the integrals on the right is greater than or equal to \(\frac{1}{4} \int_{[a,b,c,a]} f(z) \, dz \). Thus, if \(a_0 := a \)
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \\
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]

implies that the absolute value of one of the integrals on the right is greater than or equal to \(\left| \frac{1}{4} \int_{[a,b,c,a]} f(z) \, dz \right| \). Thus, if \(a_0 := a, \ b_0 := b \)
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \\
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]

implies that the absolute value of one of the integrals on the right is greater than or equal to \(\left| \frac{1}{4} \int_{[a,b,c,a]} f(z) \, dz \right| \). Thus, if \(a_0 := a \), \(b_0 := b \), \(c_0 := c \)
Proof.
\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \\
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]
implies that the absolute value of one of the integrals on the right is greater than or equal to \(\frac{1}{4} \left| \int_{[a,b,c,a]} f(z) \, dz \right| \). Thus, if \(a_0 := a \), \(b_0 := b \), \(c_0 := c \), then we can find \(a_1, b_1, c_1 \) so that
\[
\left| \int_{[a_1,b_1,c_1,a_1]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right|
\]
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz \\
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]

implies that the absolute value of one of the integrals on the right is greater than or equal to \(\frac{1}{4} \left| \int_{[a,b,c,a]} f(z) \, dz \right| \). Thus, if \(a_0 := a, b_0 := b, c_0 := c \), then we can find \(a_1, b_1, c_1 \) so that

\[
\left| \int_{[a_1,b_1,c_1,a_1]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right|
\]

so that the lengths of the sides satisfy

\[
l([a_1, b_1, c_1, a_1]) \leq \frac{1}{2} \cdot l([a_0, b_0, c_0, a_0])
\]
Proof.

\[
\int_{[a,b,c,a]} f(z) \, dz = \int_{[a,m_{ab},m_{ca},a]} f(z) \, dz + \int_{[b,m_{bc},m_{ab},b]} f(z) \, dz
\]

\[
+ \int_{[c,m_{ca},m_{bc},b]} f(z) \, dz + \int_{[m_{ab},m_{bc},m_{ca},m_{ab}]} f(z) \, dz
\]

implies that the absolute value of one of the integrals on the right is greater than or equal to \(\left| \frac{1}{4} \int_{[a,b,c,a]} f(z) \, dz \right| \). Thus, if \(a_0 := a, b_0 := b, c_0 := c \), then we can find \(a_1, b_1, c_1 \) so that

\[
\left| \int_{[a_1,b_1,c_1,a_1]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right|
\]

so that the lengths of the sides satisfy

\[
l([a_1, b_1, c_1, a_1]) \leq \frac{1}{2} l([a_0, b_0, c_0, a_0])\]

and so that the diameters satisfy

\[
diam(\Delta(a_1, b_1, c_1)) \leq \frac{1}{2} diam(\Delta(a_0, b_0, c_0)).\]
Proof.
Proof.
Proof.

\[
\begin{align*}
&|\int_{[a_n, b_n, c_n, a_n]} f(z) \, dz| \\
\geq &\cdot \cdot \cdot \\
\geq & 1/4 |\int_{[a_0, b_0, c_0, a_0]} f(z) \, dz| \\
\leq &\cdot \cdot \cdot \\
\leq & 1/2 \text{diam}(\Delta(a_n, b_n, c_n)) \\
\leq &\cdot \cdot \cdot \\
\leq & 1/2 n \text{diam}(\Delta(a_0, b_0, c_0))
\end{align*}
\]
Proof.
Proof.

\[
\int_{\gamma_0} f(z) \, dz \geq \frac{1}{4} \left(\int_{\gamma_{n-1}} f(z) \, dz \right) \geq \cdots \geq \frac{1}{2^n} \left(\int_{\gamma_0} f(z) \, dz \right)
\]

\[
\text{diam} \left(\Delta(a_n, b_n, c_n) \right) \leq \frac{1}{2} \text{diam} \left(\Delta(a_{n-1}, b_{n-1}, c_{n-1}) \right) \leq \cdots \leq \frac{1}{2^n} \text{diam} \left(\Delta(a_0, b_0, c_0) \right)
\]
Proof.
Proof.
Proof.
Proof.
Proof.
Proof.

\[
\left| \int_{\gamma_n} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{\gamma_{n-1}} f(z) \, dz \right| \geq \cdots \geq \frac{1}{2^n} \left| \int_{\gamma_0} f(z) \, dz \right|
\]

\[
\text{diam}(\Delta(a_n, b_n, c_n)) \leq \frac{1}{2} \text{diam}(\Delta(a_{n-1}, b_{n-1}, c_{n-1})) \leq \cdots \leq \frac{1}{2^n} \text{diam}(\Delta(a_0, b_0, c_0))
\]
Proof.

\[
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots \geq \frac{1}{2^n} \left| \int_{[a_0, b_0, c_0, a_0]} f(z) \, dz \right| \leq \frac{1}{2^n} \text{diam} \left(\Delta (a_n, b_n, c_n) \right) \leq \cdots \leq \frac{1}{2} \text{diam} \left(\Delta (a_0, b_0, c_0) \right).
\]
Proof.

\[
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right|
\]
Proof.

\[
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots
\]
Proof.

\[
\left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1},b_{n-1},c_{n-1},a_{n-1}]} f(z) \, dz \right| \geq \cdots \\
\geq \frac{1}{4^n} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right|
\]
Proof.

\[
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots
\]

\[
\geq \frac{1}{4^n} \left| \int_{[a_0, b_0, c_0, a_0]} f(z) \, dz \right|
\]

\[
l([a_n, b_n, c_n, a_n]) \leq \frac{1}{2} l([a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}])
\]
Proof.

\[
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots \\
\geq \frac{1}{4^n} \left| \int_{[a_0, b_0, c_0, a_0]} f(z) \, dz \right| \\
l([a_n, b_n, c_n, a_n]) \leq \frac{1}{2} l([a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]) \leq \cdots
\]
Proof.

\[
\left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1},b_{n-1},c_{n-1},a_{n-1}]} f(z) \, dz \right| \geq \cdots \\
\geq \frac{1}{4^n} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right| \\
l([a_n,b_n,c_n,a_n]) \leq \frac{1}{2} l([a_{n-1},b_{n-1},c_{n-1},a_{n-1}]) \leq \cdots \leq \frac{1}{2^n} l([a_0,b_0,c_0,a_0])
\]
Proof.

\[\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots \]

\[\geq \frac{1}{4^n} \left| \int_{[a_0, b_0, c_0, a_0]} f(z) \, dz \right| \]

\[l([a_n, b_n, c_n, a_n]) \leq \frac{1}{2} l([a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]) \leq \cdots \leq \frac{1}{2^n} l([a_0, b_0, c_0, a_0]) \]

\[\text{diam} \left(\Delta(a_n, b_n, c_n) \right) \leq \frac{1}{2} \text{diam} \left(\Delta(a_{n-1}, b_{n-1}, c_{n-1}) \right) \]
Proof.

\[\left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right| \geq \frac{1}{4} \left| \int_{[a_{n-1},b_{n-1},c_{n-1},a_{n-1}]} f(z) \, dz \right| \geq \cdots \]

\[\geq \frac{1}{4^n} \left| \int_{[a_0,b_0,c_0,a_0]} f(z) \, dz \right| \]

\[l([a_n,b_n,c_n,a_n]) \leq \frac{1}{2} l([a_{n-1},b_{n-1},c_{n-1},a_{n-1}]) \leq \cdots \leq \frac{1}{2^n} l([a_0,b_0,c_0,a_0]) \]

\[\text{diam}(\Delta(a_n,b_n,c_n)) \leq \frac{1}{2} \text{diam}(\Delta(a_{n-1},b_{n-1},c_{n-1})) \leq \cdots \]
Proof.

\[
\begin{align*}
\left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| & \geq \frac{1}{4} \left| \int_{[a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]} f(z) \, dz \right| \geq \cdots \\
& \geq \frac{1}{4^n} \left| \int_{[a_0, b_0, c_0, a_0]} f(z) \, dz \right|
\end{align*}
\]

\[
\begin{align*}
l([a_n, b_n, c_n, a_n]) & \leq \frac{1}{2} l([a_{n-1}, b_{n-1}, c_{n-1}, a_{n-1}]) \leq \cdots \leq \frac{1}{2^n} l([a_0, b_0, c_0, a_0]) \\
diam(\Delta(a_n, b_n, c_n)) & \leq \frac{1}{2} diam(\Delta(a_{n-1}, b_{n-1}, c_{n-1})) \leq \cdots \leq \frac{1}{2^n} diam(\Delta(a_0, b_0, c_0))
\end{align*}
\]
Proof.
Proof. By definition of the derivative

\[0 = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \]
Proof. By definition of the derivative

\[0 = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) =: \lim_{z \to z_0} h(z) \]
Proof. By definition of the derivative

\[0 = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) =: \lim_{z \to z_0} h(z) \]

Thus there is a function \(h \) so that for all \(z \) we have

\[f(z) = f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \]
Proof. By definition of the derivative

\[0 = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) = \lim_{z \to z_0} h(z) \]

Thus there is a function \(h \) so that for all \(z \) we have

\[f(z) = f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \]

and \(\lim_{z \to z_0} h(z) = 0. \)
Proof. By definition of the derivative

\[0 = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) = \lim_{z \to z_0} h(z). \]

Thus there is a function \(h \) so that for all \(z \) we have

\[f(z) = f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \]

and \(\lim_{z \to z_0} h(z) = 0 \). For any \(\varepsilon > 0 \) we can find an \(n \) so that

\[\sup_{z \in [a_n, b_n, c_n, a_n]} |h(z)| < \frac{\varepsilon}{l[a, b, c, a] \text{diam}(\Delta(a, b, c))}. \]
Proof.
Proof. Then

\[\left| \int_{[a,b,c,a]} f(z) \, dz \right|\]
Proof. Then

\[
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
\]
Proof. Then
\[
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
\]
\[
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right|
\]
Proof. Then

\[
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
\]

\[
= \ 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right|
\]

\[
= \ 4^n \left| \int_{[a_n,b_n,c_n,a_n]} h(z)(z - z_0) \, dz \right|
\]
Proof. Then

\[
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
\]

\[
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right|
\]

\[
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} h(z)(z - z_0) \, dz \right| \leq 4^n \int_{[a_n,b_n,c_n,a_n]} |z - z_0| |h(z)| \, d|z|
\]
Proof. Then

\[
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
\]

\[
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right|
\]

\[
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} h(z)(z - z_0) \, dz \right| \leq 4^n \int_{[a_n,b_n,c_n,a_n]} |z - z_0| |h(z)| \, |dz|
\]

\[
\leq 4^n l[a_n, b_n, c_n, a_n] \text{diam} \left(\Delta(a_n, b_n, c_n) \right) \sup_{z \in [a_n, b_n, c_n, a_n]} |h(z)|
\]
Proof. Then

\[\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right| \]

\[= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right| \]

\[= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} h(z)(z - z_0) \, dz \right| \leq 4^n \int_{[a_n,b_n,c_n,a_n]} |(z - z_0)| |h(z)| \, d|z| \]

\[\leq 4^n L[a_n,b_n,c_n,a_n] \text{diam}\left(\Delta(a_n,b_n,c_n)\right) \sup_{z \in [a_n,b_n,c_n,a_n]} |h(z)| \]

\[= 4^n \frac{1}{2^n} L[a,b,c,a] \frac{1}{2^n} \text{diam}\left(\Delta(a,b,c)\right) \sup_{z \in [a_n,b_n,c_n,a_n]} |h(z)| \]
Proof. Then

$$
\left| \int_{[a,b,c,a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z) \, dz \right|
$$

$$
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} f(z_0) + \frac{d}{dz} f(z_0) (z - z_0) + h(z)(z - z_0) \, dz \right|
$$

$$
= 4^n \left| \int_{[a_n,b_n,c_n,a_n]} h(z)(z - z_0) \, dz \right| \leq 4^n \int_{[a_n,b_n,c_n,a_n]} \left| z - z_0 \right| \left| h(z) \right| \, d|z|
$$

$$
\leq 4^n l[a_n,b_n,c_n,a_n] \text{diam}\left(\Delta(a_n,b_n,c_n)\right) \sup_{z \in [a_n,b_n,c_n,a_n]} \left| h(z) \right|
$$

$$
= 4^n \frac{1}{2^n} l[a,b,c,a] \frac{1}{2^n} \text{diam}\left(\Delta(a,b,c)\right) \sup_{z \in [a_n,b_n,c_n,a_n]} \left| h(z) \right|
$$

$$
\leq l[a,b,c,a] \text{diam}\left(\Delta(a,b,c)\right) \sup_{z \in [a_n,b_n,c_n,a_n]} \left| h(z) \right| < \varepsilon
$$
Proof. Then

\[\left| \int_{[a, b, c, a]} f(z) \, dz \right| \leq 4^n \left| \int_{[a_n, b_n, c_n, a_n]} f(z) \, dz \right| \]

\[= 4^n \left| \int_{[a_n, b_n, c_n, a_n]} f(z_0) + f'(z_0)(z - z_0) + h(z)(z - z_0) \, dz \right| \]

\[= 4^n \left| \int_{[a_n, b_n, c_n, a_n]} h(z)(z - z_0) \, dz \right| \leq 4^n \int_{[a_n, b_n, c_n, a_n]} \left| (z - z_0) \right| \left| h(z) \right| \, d|z| \]

\[\leq 4^n l[a_n, b_n, c_n, a_n] \text{diam} \left(\Delta(a_n, b_n, c_n) \right) \sup_{z \in [a_n, b_n, c_n, a_n]} \left| h(z) \right| \]

\[= 4^n \frac{1}{2^n} l[a, b, c, a] \frac{1}{2^n} \text{diam} \left(\Delta(a, b, c) \right) \sup_{z \in [a_n, b_n, c_n, a_n]} \left| h(z) \right| \]

\[\leq l[a, b, c, a] \text{diam} \left(\Delta(a, b, c) \right) \sup_{z \in [a_n, b_n, c_n, a_n]} \left| h(z) \right| < \varepsilon \]

implies that \(\int_{[a, b, c, a]} f(z) \, dz = 0 \), because \(\varepsilon \) was arbitrary.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Integral Theorems
Proof.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour's interior.

2. But if \(C \) is the positively oriented unit circle, then \(\int_C z^{-1} \, dz = 2\pi i \neq 0 \) shows that the result need not hold when the function is not analytic in the whole interior.

3. Side note: \(\int_C z^{-2} \, dz = 0 \) shows that just because the function is not analytic in the interior, the theorem need not fail automatically.

This is quite common in mathematics and in life. If your hypotheses are satisfied, then you can say something with confidence. But if not, it's often "anything goes."
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.

2. But if C is the positively oriented unit circle, then
\[\int_C z^{-1} \, dz = 2\pi i \neq 0 \]
shows that the result need not hold when the function is not analytic in the whole interior.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.

2. But if \(C \) is the positively oriented unit circle, then
\[
\int_{C} z^{-1} \, dz = 2\pi i \neq 0
\]
shows that the result need not hold when the function is not analytic in the whole interior.

3. Side note: \(\int_{C} z^{-2} \, dz = 0 \) shows that just because the function is not analytic in the interior, the theorem need not fail automatically.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.

2. But if C is the positively oriented unit circle, then $\int_C z^{-1} \, dz = 2\pi i \neq 0$ shows that the result need not hold when the function is not analytic in the whole interior.

3. Side note: $\int_C z^{-2} \, dz = 0$ shows that just because the function is not analytic in the interior, the theorem need not fail automatically. This is quite common in mathematics and in life.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.

2. But if C is the positively oriented unit circle, then
 \[\int_C z^{-1} \, dz = 2\pi i \neq 0 \]
 shows that the result need not hold when the function is not analytic in the whole interior.

3. Side note: \[\int_C z^{-2} \, dz = 0 \]
 shows that just because the function is not analytic in the interior, the theorem need not fail automatically. This is quite common in mathematics and in life. If your hypotheses are satisfied, then you can say something with confidence.
Domains With and Without Holes

1. The Cauchy-Goursat Theorem works as long as the function is analytic on a domain that contains the contour and the contour’s interior.

2. But if C is the positively oriented unit circle, then

$$\int_C z^{-1} \, dz = 2\pi i \neq 0$$

shows that the result need not hold when the function is not analytic in the whole interior.

3. Side note: $\int_C z^{-2} \, dz = 0$ shows that just because the function is not analytic in the interior, the theorem need not fail automatically. This is quite common in mathematics and in life. If your hypotheses are satisfied, then you can say something with confidence. But if not, it’s often “anything goes”.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Domains With and Without Holes

4. The problem with $z - 1$ on the unit circle is apparently that the function is not analytic (not even defined) at $z = 0$.

5. Pictorially, the domain of $z - 1$ has a "hole" at zero, and we want to formalize that idea.
Domains With and Without Holes

4. The problem with z^{-1} on the unit circle is apparently that the function is not analytic (not even defined) at $z = 0$.
Domains With and Without Holes

4. The problem with z^{-1} on the unit circle is apparently that the function is not analytic (not even defined) at $z = 0$.
5. Pictorially, the domain of z^{-1} has a “hole” at zero
Domains With and Without Holes

4. The problem with z^{-1} on the unit circle is apparently that the function is not analytic (not even defined) at $z = 0$.

5. Pictorially, the domain of z^{-1} has a “hole” at zero, and we want to formalize that idea.
Definition.
Definition. A domain D is called simply connected.

Simply connected means "no holes".
Definition. A domain D *(remember domains are connected)*
Definition. A domain D (remember domains are connected) so that for every simple closed contour C in D the interior of C is contained in D, too, is called **simply connected**.
Definition. A domain D (remember domains are connected) so that for every simple closed contour C in D the interior of C is contained in D, too, is called **simply connected**.
Definition. A domain D (remember domains are connected) so that for every simple closed contour C in D the interior of C is contained in D, too, is called simply connected.
Definition. A domain D (remember domains are connected) so that for every simple closed contour C in D the interior of C is contained in D, too, is called **simply connected**.
Definition. A domain D (remember domains are connected) so that for every simple closed contour C in D the interior of C is contained in D, too, is called simply connected.

Simply connected means “no holes”.
Theorem.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If \(f \) is analytic on the simply connected domain \(D \), then for any closed contour \(C \) in \(D \) we have \(\int_C f(z) \, dz = 0 \).

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z) \, dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem. If f is analytic on the simply connected domain D, then for any closed contour C in D we have $\int_C f(z)\,dz = 0$.

Proof. For simple closed contours, this is the Cauchy-Goursat Theorem. Contours that intersect themselves can be broken up into simple contours.
Theorem.
Theorem. *If f is analytic on the simply connected domain D, then f has an antiderivative.*
Theorem. If f is analytic on the simply connected domain D, then f has an antiderivative.

Proof.
Theorem. If f is analytic on the simply connected domain D, then f has an antiderivative.

Proof. By the preceding theorem, integrals of f over closed contours are zero.
Theorem. If f is analytic on the simply connected domain D, then f has an antiderivative.

Proof. By the preceding theorem, integrals of f over closed contours are zero. By our first theorem, f must have an antiderivative.
Theorem. If f is analytic on the simply connected domain D, then f has an antiderivative.

Proof. By the preceding theorem, integrals of f over closed contours are zero. By our first theorem, f must have an antiderivative.◼
Definition.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.
Definition. A domain D that is not simply connected is called multiply connected.

Multiply connected means there are holes.
Theorem.
Theorem. Let C be a positively oriented simple closed contour.
Theorem. Let C be a positively oriented simple closed contour. Let C_1, \ldots, C_n be pairwise disjoint clockwise (that is, negatively) oriented simple closed contours in the interior of C.
Theorem. Let C be a positively oriented simple closed contour. Let C_1, \ldots, C_n be pairwise disjoint clockwise (that is, negatively) oriented simple closed contours in the interior of C. Let f be analytic in a (possibly multiply connected) domain that contains the contours and the region inside C and outside the C_j.
Theorem. Let C be a positively oriented simple closed contour. Let C_1, \ldots, C_n be pairwise disjoint clockwise (that is, negatively) oriented simple closed contours in the interior of C. Let f be analytic in a (possibly multiply connected) domain that contains the contours and the region inside C and outside the C_j. Then

$$\int_C f(z) \, dz + \sum_{j=1}^{n} \int_{C_j} f(z) \, dz = 0.$$
Proof.
Theorem.

Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$

Proof. Same proof as previous result, except that, because both contours are positively oriented, this time the difference is zero.

Bring the integral over C_2 to the right side.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then $\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz$.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then \[\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz. \]

Proof.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then $\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz$.

Proof. Same proof as previous result.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then \[\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz. \]

Proof. Same proof as previous result, except that, because both contours are positively oriented
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then $\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz$.

Proof. Same proof as previous result, except that, because both contours are positively oriented, this time the difference is zero.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then $\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz$.

Proof. Same proof as previous result, except that, because both contours are positively oriented, this time the difference is zero. Now bring the integral over C_2 to the right side.
Theorem. Let C_1 and C_2 be positively oriented simple closed contours so that C_1 is contained in the interior of C_2. Let f be analytic in a region that contains the contours and the region between them. Then $\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz$.

Proof. Same proof as previous result, except that, because both contours are positively oriented, this time the difference is zero. Now bring the integral over C_2 to the right side.
Example.

The integral of \(\frac{1}{z} \) around any positively oriented simple closed contour that has the origin in its interior is \(2\pi i \).

We have proved that the integral of this function along positively oriented circles around the origin is \(2\pi i \).

The preceding theorem lets us go to arbitrary positively oriented simple closed contours that have the origin in their interior, because we can always put a tiny circle into the contour's interior or draw a large circle around it.
Example. The integral of z^{-1} around any positively oriented simple closed contour that has the origin in its interior is $2\pi i$.
Example. The integral of z^{-1} around any positively oriented simple closed contour that has the origin in its interior is $2\pi i$.

We have proved that the integral of this function along positively oriented circles around the origin is $2\pi i$.
Example. The integral of z^{-1} around any positively oriented simple closed contour that has the origin in its interior is $2\pi i$.

We have proved that the integral of this function along positively oriented circles around the origin is $2\pi i$. The preceding theorem lets us go to arbitrary positively oriented simple closed contours that have the origin in their interior.
Example. *The integral of z^{-1} around any positively oriented simple closed contour that has the origin in its interior is $2\pi i$.*

We have proved that the integral of this function along positively oriented circles around the origin is $2\pi i$. The preceding theorem lets us go to arbitrary positively oriented simple closed contours that have the origin in their interior, because we can always put a tiny circle into the contour’s interior or draw a large circle around it.