Series Expansion of Analytic Functions

Bernd Schröder
Introduction
Introduction

1. Power series essentially function like “infinite polynomials.”
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
3. We will show in this presentation that every analytic function is locally equal to a power series.
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
3. We will show in this presentation that every analytic function is locally equal to a power series (its Taylor series).
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
3. We will show in this presentation that every analytic function is locally equal to a power series (its Taylor series).
4. This result will help simplify a lot of later results.
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
3. We will show in this presentation that every analytic function is locally equal to a power series (its Taylor series).
4. This result will help simplify a lot of later results.
5. It is one of the reasons why complex analysis is so powerful
Introduction

1. Power series essentially function like “infinite polynomials.”
2. That is, except for the “infinite” part, they are among the easiest to handle functions.
3. We will show in this presentation that every analytic function is locally equal to a power series (its Taylor series).
4. This result will help simplify a lot of later results.
5. It is one of the reasons why complex analysis is so powerful: Analytic functions are very well-behaved.
Introduction
Introduction

1. To understand power series, we need to understand series.
Introduction

1. To understand power series, we need to understand series.
2. To understand series, we need to understand sequences.
Introduction

1. To understand power series, we need to understand series.
2. To understand series, we need to understand sequences.
3. So that’s where we start.
Introduction

1. To understand power series, we need to understand series.
2. To understand series, we need to understand sequences.
3. So that’s where we start.
4. But we will not spend excessive amounts of time on minutiae.
Introduction

1. To understand power series, we need to understand series.
2. To understand series, we need to understand sequences.
3. So that’s where we start.
4. But we will not spend excessive amounts of time on minutiae.
5. The goal is to get to the power series expansion of analytic functions as efficiently as possible.
Definition.
Definition. A complex number L is called the limit of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if
Definition. A complex number L is called the limit of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Definition. A complex number \(L \) is called the limit of the sequence \(z_1, z_2, z_3, \ldots \) of complex numbers if and only if for every \(\varepsilon > 0 \) there is a natural number \(N \)
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$
Definition. A complex number \(L \) is called the limit of the sequence \(z_1, z_2, z_3, \ldots \) of complex numbers if and only if for every \(\varepsilon > 0 \) there is a natural number \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \).
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Definition. A complex number L is called the limit of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.

![Diagram of complex plane with point z_1]
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Definition. A complex number \(L \) is called the \textbf{limit} of the sequence \(z_1, z_2, z_3, \ldots \) of complex numbers if and only if for every \(\varepsilon > 0 \) there is a natural number \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). In this case we write \(\lim_{n \to \infty} z_n = L \).
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Series Expansion of Analytic Functions
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.

![Diagram showing complex numbers and their limits](image-url)
Definition. A complex number L is called the **limit** of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Definition. A complex number L is called the limit of the sequence z_1, z_2, z_3, \ldots of complex numbers if and only if for every $\varepsilon > 0$ there is a natural number N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. In this case we write $\lim_{n \to \infty} z_n = L$.
Theorem.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. But then for all $n \geq N$ we have $|x_n - Lx| < \varepsilon$. Conversely, if $\lim_{n \to \infty} x_n = Lx$ and $\lim_{n \to \infty} y_n = Ly$ then there is an integer N so that for all $n \geq N$ we have $|x_n - Lx| < \epsilon^2$ and $|y_n - Ly| < \epsilon^2$. But then for all $n \geq N$ we have $|z_n - L| = |(x_n + iy_n) - (Lx + iLy)| \leq |x_n - Lx| + |y_n - Ly| < \epsilon^2 + \epsilon^2$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if

\[
\lim_{n \to \infty} x_n = L \quad \text{and} \quad \lim_{n \to \infty} y_n = L \quad \text{if and only if}
\]
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let $\varepsilon > 0$.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$.
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have \(|x_n - L_x| \)
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have

\[
|x_n - L_x| \leq |z_n - L|
\]
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have \(|x_n - L_x| \leq |z_n - L| < \varepsilon \).
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. But then for all $n \geq N$ we have $|x_n - L_x| \leq |z_n - L| < \varepsilon$.

Conversely, if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have \(|x_n - L_x| \leq |z_n - L| < \varepsilon \).

Conversely, if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \) then there is an integer \(N \)
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\epsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \epsilon$. But then for all $n \geq N$ we have $|x_n - L_x| \leq |z_n - L| < \epsilon$.

Conversely, if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$ then there is an integer N so that for all $n \geq N$ we have $|x_n - L_x| < \frac{\epsilon}{2}$ and $|y_n - L_y| < \frac{\epsilon}{2}$.
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have

\[
|z_n - L| = |x_n - L_x + iy_n - L_y| = |x_n - L_x| + |y_n - L_y| < \varepsilon.
\]

Conversely, if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|x_n - L_x| < \frac{\varepsilon}{2} \) and \(|y_n - L_y| < \frac{\varepsilon}{2} \). But then for all \(n \geq N \) we have

\[
|z_n - L| = |x_n - L_x + iy_n - L_y| = |x_n - L_x| + |y_n - L_y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have
\[
|z_n - L| = \left| (x_n + iy_n) - (L_x + iL_y) \right| < \varepsilon.
\]
Conversely, if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|x_n - L_x| < \frac{\varepsilon}{2} \) and \(|y_n - L_y| < \frac{\varepsilon}{2} \). But then for all \(n \geq N \) we have
\[
|z_n - L| = \left| (x_n + iy_n) - (L_x + iL_y) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. But then for all $n \geq N$ we have $|x_n - L_x| \leq |z_n - L| < \varepsilon$.

Conversely, if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$ then there is an integer N so that for all $n \geq N$ we have $|x_n - L_x| < \frac{\varepsilon}{2}$ and $|y_n - L_y| < \frac{\varepsilon}{2}$. But then for all $n \geq N$ we have

$$|z_n - L| = |(x_n + iy_n) - (L_x + iL_y)| \leq |x_n - L_x| + |y_n - L_y|$$
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\lim_{n \to \infty} z_n = L$ if and only if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$.

Proof. Let $\varepsilon > 0$. If $\lim_{n \to \infty} z_n = L$ then there is an integer N so that for all $n \geq N$ we have $|z_n - L| < \varepsilon$. But then for all $n \geq N$ we have $|x_n - L_x| \leq |z_n - L| < \varepsilon$.

Conversely, if $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$ then there is an integer N so that for all $n \geq N$ we have $|x_n - L_x| < \frac{\varepsilon}{2}$ and $|y_n - L_y| < \frac{\varepsilon}{2}$. But then for all $n \geq N$ we have

$$|z_n - L| = |(x_n + iy_n) - (L_x + iL_y)| \leq |x_n - L_x| + |y_n - L_y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then \(\lim_{n \to \infty} z_n = L \) if and only if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \).

Proof. Let \(\varepsilon > 0 \). If \(\lim_{n \to \infty} z_n = L \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|z_n - L| < \varepsilon \). But then for all \(n \geq N \) we have
\[
|x_n - L_x| \leq |z_n - L| < \varepsilon.
\]
Conversely, if \(\lim_{n \to \infty} x_n = L_x \) and \(\lim_{n \to \infty} y_n = L_y \) then there is an integer \(N \) so that for all \(n \geq N \) we have \(|x_n - L_x| < \frac{\varepsilon}{2} \) and \(|y_n - L_y| < \frac{\varepsilon}{2} \). But then for all \(n \geq N \) we have
\[
|z_n - L| = |(x_n + iy_n) - (L_x + iL_y)| \leq |x_n - L_x| + |y_n - L_y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.
\]
Example.
Example. \[\lim_{n \to \infty} \left(\frac{1}{n} + i \frac{n^2 + 1}{n^2} \right) = i. \]
Example. \[\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = i. \]

\[\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = (\lim_{n \to \infty} \frac{1}{n}) + i (\lim_{n \to \infty} \frac{1}{n} + \frac{1}{n^2}) = 0 + i \cdot 1 = i. \]
Example. $\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = i.$

$$\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} \frac{n^2 + 1}{n^2} \right)$$
Example. \(\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = i. \)

\[
\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} \frac{n^2 + 1}{n^2} \right)
\]

\[
= \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} 1 + \frac{1}{n^2} \right)
\]
Example. \[\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = i. \]

\[
\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} \frac{n^2 + 1}{n^2} \right)
\]

\[
= \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} 1 + \frac{1}{n^2} \right)
\]

\[
= 0 + i \cdot 1
\]
Example. \[\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = i. \]

\[\lim_{n \to \infty} \frac{1}{n} + i \frac{n^2 + 1}{n^2} = \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} \frac{n^2 + 1}{n^2} \right) \]

\[= \left(\lim_{n \to \infty} \frac{1}{n} \right) + i \left(\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right) \right) \]

\[= 0 + i \cdot 1 = i \]
Example.
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$.
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$

$$\lim_{n \to \infty} \frac{z^n}{1 - z} = \lim_{n \to \infty} \frac{z^n (1 - \bar{z})}{(1 - z)(1 - \bar{z})}$$
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$

\[
\lim_{n \to \infty} \frac{z^n}{1 - z} = \lim_{n \to \infty} \frac{z^n (1 - \bar{z})}{(1 - z)(1 - \bar{z})} = \lim_{n \to \infty} \frac{r^n e^{in\theta} (1 - re^{-i\theta})}{1 - 2\Re(z) + |z|^2}
\]
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$

\[
\lim_{n \to \infty} \frac{z^n}{1 - z} = \lim_{n \to \infty} \frac{z^n(1 - \bar{z})}{(1 - z)(1 - \bar{z})} = \lim_{n \to \infty} \frac{r^n e^{i\theta}(1 - re^{-i\theta})}{1 - 2\Re(z) + |z|^2} = \lim_{n \to \infty} \frac{r^n(\cos(n\theta) + i\sin(n\theta))(1 - r\cos(\theta) + ir\sin(\theta))}{1 - 2\Re(z) + |z|^2}
\]
Example. For $|z| < 1$ we have $\lim_{{n \to \infty}} \frac{z^n}{1 - z} = 0$

\[
\lim_{{n \to \infty}} \frac{z^n}{1 - z} = \lim_{{n \to \infty}} \frac{z^n (1 - \bar{z})}{(1 - z)(1 - \bar{z})} = \lim_{{n \to \infty}} \frac{r^n e^{i\theta} (1 - re^{-i\theta})}{1 - 2\Re(z) + |z|^2}
\]

\[
= \lim_{{n \to \infty}} \frac{r^n (\cos(n\theta) + i\sin(n\theta)) (1 - r\cos(\theta) + ir\sin(\theta))}{1 - 2\Re(z) + |z|^2}
\]

\[
= \lim_{{n \to \infty}} \frac{r^n (\cos(n\theta)(1 - r\cos(\theta)) - r\sin(n\theta)\sin(\theta))}{1 - 2\Re(z) + |z|^2}
\]
Example. For $|z| < 1$ we have $\lim_{n \to \infty} \frac{z^n}{1 - z} = 0$

\[
\lim_{n \to \infty} \frac{z^n}{1 - z} = \lim_{n \to \infty} \frac{z^n (1 - \bar{z})}{(1 - z)(1 - \bar{z})} = \lim_{n \to \infty} \frac{r^n e^{in\theta} (1 - re^{-i\theta})}{1 - 2\Re(z) + |z|^2} = \lim_{n \to \infty} \frac{r^n (\cos(n\theta) + i\sin(n\theta)) (1 - r\cos(\theta) + ir\sin(\theta))}{1 - 2\Re(z) + |z|^2}
\]

\[
= \lim_{n \to \infty} \frac{r^n (\cos(n\theta)(1 - r\cos(\theta)) - r\sin(n\theta)\sin(\theta))}{1 - 2\Re(z) + |z|^2} + \lim_{n \to \infty} i\frac{r^n (\cos(n\theta)r\sin(\theta) + \sin(n\theta)(1 - r\cos(\theta)))}{1 - 2\Re(z) + |z|^2}
\]
Example. For $|z| < 1$ we have \[\lim_{n \to \infty} \frac{z^n}{1 - z} = 0 \]

\[
\lim_{n \to \infty} \frac{z^n}{1 - z} = \lim_{n \to \infty} \frac{z^n (1 - \bar{z})}{(1 - z)(1 - \bar{z})} = \lim_{n \to \infty} \frac{r^n e^{in\theta} (1 - re^{-i\theta})}{1 - 2\Re(z) + |z|^2} \]

\[
= \lim_{n \to \infty} \frac{r^n (\cos(n\theta) + i\sin(n\theta)) (1 - r\cos(\theta) + ir\sin(\theta))}{1 - 2\Re(z) + |z|^2} \]

\[
= \lim_{n \to \infty} \frac{r^n (\cos(n\theta)(1 - r\cos(\theta)) - r\sin(n\theta)\sin(\theta))}{1 - 2\Re(z) + |z|^2} \]

\[
+ \lim_{n \to \infty} \frac{r^n (\cos(n\theta)r\sin(\theta) + \sin(n\theta)(1 - r\cos(\theta)))}{1 - 2\Re(z) + |z|^2} \]

\[= 0\]
Definition.
Definition. An infinite series \(z_1 + z_2 + z_3 + \cdots \)
Definition. An infinite series \(z_1 + z_2 + z_3 + \cdots = \sum_{n=1}^{\infty} z_n \)
Definition. An infinite series $z_1 + z_2 + z_3 + \cdots = \sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge to a limit L if and only if

\[\sum_{n=1}^{\infty} z_n = L. \]
Definition. An infinite series $z_1 + z_2 + z_3 + \cdots =: \sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge to a limit L if and only if the sequence of partial sums $\sum_{n=1}^{N} z_n = z_1 + z_2 + \cdots + z_N$ converges to L.
Definition. An infinite series \(z_1 + z_2 + z_3 + \cdots =: \sum_{n=1}^{\infty} z_n \) of complex numbers is said to converge to a limit \(L \) if and only if the sequence of partial sums \(\sum_{n=1}^{N} z_n = z_1 + z_2 + \cdots + z_N \) converges to \(L \). In this case we write \(\sum_{n=1}^{\infty} z_n = L \).
Definition. An infinite series $z_1 + z_2 + z_3 + \cdots = \sum_{n=1}^{\infty} z_n$ of complex numbers is said to **converge** to a limit L if and only if the sequence of partial sums $\sum_{n=1}^{N} z_n = z_1 + z_2 + \cdots + z_N$ converges to L. In this case we write $\sum_{n=1}^{\infty} z_n = L$.

1. Note that the symbol $\sum_{n=1}^{\infty} z_n$ stands for the *series* as well as for its value.
Definition. An infinite series \(z_1 + z_2 + z_3 + \cdots =: \sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge** to a limit \(L \) if and only if the sequence of partial sums \(\sum_{n=1}^{N} z_n = z_1 + z_2 + \cdots + z_N \) converges to \(L \). In this case we write \(\sum_{n=1}^{\infty} z_n = L \).

1. Note that the symbol \(\sum_{n=1}^{\infty} z_n \) stands for the *series* as well as for its *value*.

2. Also note that technically we really have not defined what a series *is*.
Definition. An infinite series $z_1 + z_2 + z_3 + \cdots =: \sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge to a limit L if and only if the sequence of partial sums $\sum_{n=1}^{N} z_n = z_1 + z_2 + \cdots + z_N$ converges to L. In this case we write $\sum_{n=1}^{\infty} z_n = L$.

1. Note that the symbol $\sum_{n=1}^{\infty} z_n$ stands for the series as well as for its value.
2. Also note that technically we really have not defined what a series is. And that’s quite common. (I’ve looked.)
Theorem.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$.

Proof. Let $Z_N = \sum_{n=1}^{N} z_n$, $X_N = \sum_{n=1}^{N} x_n$ and $Y_N = \sum_{n=1}^{N} y_n$. Now apply the earlier theorem on sequences to the sequences denoted with the capital letters.
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\sum_{n=1}^{\infty} z_n = L \) if and only if

\[
\sum_{n=1}^{\infty} x_n = L_x \quad \text{and} \quad \sum_{n=1}^{\infty} y_n = L_y.
\]
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\sum_{n=1}^{\infty} z_n = L$ if and only if $\sum_{n=1}^{\infty} x_n = L_x$ and $\sum_{n=1}^{\infty} y_n = L_y$.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\sum_{n=1}^{\infty} z_n = L$ if and only if $\sum_{n=1}^{\infty} x_n = L_x$ and $\sum_{n=1}^{\infty} y_n = L_y$.

Proof.
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\sum_{n=1}^{\infty} z_n = L$ if and only if $\sum_{n=1}^{\infty} x_n = L_x$ and $\sum_{n=1}^{\infty} y_n = L_y$.

Proof. Let $Z_N := \sum_{n=1}^{N} z_n$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Series Expansion of Analytic Functions
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\sum_{n=1}^{\infty} z_n = L \) if and only if \(\sum_{n=1}^{\infty} x_n = L_x \) and \(\sum_{n=1}^{\infty} y_n = L_y \).

Proof. Let \(Z_N := \sum_{n=1}^{N} z_n, X_N := \sum_{n=1}^{N} x_n \).
Theorem. Let $L = L_x + iL_y$ and let $z_n = x_n + iy_n$. Then $\sum_{n=1}^{\infty} z_n = L$ if and only if $\sum_{n=1}^{\infty} x_n = L_x$ and $\sum_{n=1}^{\infty} y_n = L_y$.

Proof. Let $Z_N := \sum_{n=1}^{N} z_n$, $X_N := \sum_{n=1}^{N} x_n$ and $Y_N := \sum_{n=1}^{N} y_n$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\sum_{n=1}^{\infty} z_n = L \) if and only if \(\sum_{n=1}^{\infty} x_n = L_x \) and \(\sum_{n=1}^{\infty} y_n = L_y \).

Proof. Let \(Z_N := \sum_{n=1}^{N} z_n \), \(X_N := \sum_{n=1}^{N} x_n \) and \(Y_N := \sum_{n=1}^{N} y_n \). Now apply the earlier theorem on sequences to the sequences denoted with the capital letters.
Theorem. Let \(L = L_x + iL_y \) and let \(z_n = x_n + iy_n \). Then \(\sum_{n=1}^{\infty} z_n = L \) if and only if \(\sum_{n=1}^{\infty} x_n = L_x \) and \(\sum_{n=1}^{\infty} y_n = L_y \).

Proof. Let \(Z_N := \sum_{n=1}^{N} z_n \), \(X_N := \sum_{n=1}^{N} x_n \) and \(Y_N := \sum_{n=1}^{N} y_n \). Now apply the earlier theorem on sequences to the sequences denoted with the capital letters. □
Theorem.

Let $L = \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $|L - k - 1 \sum_{n=1}^{k} z_n| < \varepsilon/2$. Thus for all $k \geq N$ we have $|z_k| = |k \sum_{n=1}^{k} z_n - L - k \sum_{n=1}^{k-1} z_n| \leq |k \sum_{n=1}^{k} z_n - L| + |k \sum_{n=1}^{k-1} z_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus $\lim_{k \to \infty} z_k = 0$.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof.
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges, then the limit of the terms must be zero, that is, \(\lim_{n \to \infty} z_n = 0 \).

Proof. Let \(L := \sum_{n=1}^{\infty} z_n \) and let \(\varepsilon > 0 \).
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges, then the limit of the terms must be zero, that is, \(\lim_{n \to \infty} z_n = 0 \).

Proof. Let \(L := \sum_{n=1}^{\infty} z_n \) and let \(\varepsilon > 0 \). Then there is an integer \(N \) so that for all \(k \geq N \) we have

\[
\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}.
\]
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}$. Thus for all $k \geq N$ we have

$|z_k|$
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have

$$\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}.$$ Thus for all $k \geq N$ we have

$$|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right|$$
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $|L - \sum_{n=1}^{k-1} z_n| < \frac{\varepsilon}{2}$. Thus for all $k \geq N$ we have

$$|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right|$$
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}$. Thus for all $k \geq N$ we have

$$|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right| \leq \left| \sum_{n=1}^{k} z_n - L \right| + \left| \sum_{n=1}^{k-1} z_n - L \right|$$
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges, then the limit of the terms must be zero, that is, \(\lim_{n \to \infty} z_n = 0 \).

Proof. Let \(L := \sum_{n=1}^{\infty} z_n \) and let \(\varepsilon > 0 \). Then there is an integer \(N \) so that for all \(k \geq N \) we have

\[
\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}.
\]

Thus for all \(k \geq N \) we have

\[
|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right|
\]

\[
\leq \left| \sum_{n=1}^{k} z_n - L \right| + \left| \sum_{n=1}^{k-1} z_n - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}
\]
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n \to \infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}$. Thus for all $k \geq N$ we have

$$|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right|$$

$$\leq \left| \sum_{n=1}^{k} z_n - L \right| + \left| \sum_{n=1}^{k-1} z_n - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges, then the limit of the terms must be zero, that is, \(\lim_{n \to \infty} z_n = 0 \).

Proof. Let \(L := \sum_{n=1}^{\infty} z_n \) and let \(\varepsilon > 0 \). Then there is an integer \(N \) so that for all \(k \geq N \) we have \(\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2} \). Thus for all \(k \geq N \) we have

\[
|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right| \\
\leq \left| \sum_{n=1}^{k} z_n - L \right| + \left| \sum_{n=1}^{k-1} z_n - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

Thus \(\lim_{k \to \infty} z_k = 0 \).
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges, then the limit of the terms must be zero, that is, $\lim_{n\to\infty} z_n = 0$.

Proof. Let $L := \sum_{n=1}^{\infty} z_n$ and let $\varepsilon > 0$. Then there is an integer N so that for all $k \geq N$ we have $\left| L - \sum_{n=1}^{k-1} z_n \right| < \frac{\varepsilon}{2}$. Thus for all $k \geq N$ we have

$$|z_k| = \left| \sum_{n=1}^{k} z_n - \sum_{n=1}^{k-1} z_n \right| = \left| \left(\sum_{n=1}^{k} z_n - L \right) - \left(\sum_{n=1}^{k-1} z_n - L \right) \right|$$

$$\leq \left| \sum_{n=1}^{k} z_n - L \right| + \left| \sum_{n=1}^{k-1} z_n - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus $\lim_{k\to\infty} z_k = 0$. \[\blacksquare\]
WARNING: The converse is NOT true.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \cdots \geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots \]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n}
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} \]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots$$
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} \]

\[+ \frac{1}{3} + \frac{1}{4} \]

\[+ \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \]

\[+ \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} \]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

$$
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots
$$
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots \geq 1
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots \geq 1 + \frac{1}{2} \]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots \]

\[\geq 1 + \frac{1}{2} + \frac{1}{2} \]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots \\
\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots
\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}
\]
WARNING: The converse is NOT true.

The terms can go to zero, but a series may still not converge.

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \cdots \]

\[\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots \]
Definition.
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to converge absolutely if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge **absolutely** if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.
2. Unfortunately not every convergent series is absolutely convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor}$
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to **converge absolutely** if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.
2. Unfortunately not every convergent series is absolutely convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1$
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to converge **absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.
2. Unfortunately not every convergent series is absolutely convergent: \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1 - 1 \)

Bernd Schröder Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1 - 1 + \frac{1}{2} \)
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: \(\sum_{n=1}^{\infty} (-1)^n + \frac{1}{n^2} \sum_{n=1}^{\infty} \left(-\frac{1}{2} \right) = 1 - 1 + \frac{1}{2} - \frac{1}{2} \).
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge absolutely if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3}$
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to **converge absolutely** if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\lceil \frac{n}{2} \rceil} = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0$, but $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to converge absolutely if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: $\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \left[\frac{n}{2}\right] = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0$
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent:

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0, \quad \text{but}
\]

\[
\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} \right| = \sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} \right|
\]
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to **converge absolutely** if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent: \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} = 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0 \), but \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\left\lfloor \frac{n}{2} \right\rfloor} \) which is larger than \(\sum_{n=1}^{\infty} \frac{1}{n} \), which diverges.
Definition. A series $\sum_{n=1}^{\infty} z_n$ of complex numbers is said to **converge absolutely** if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent:

 $$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\lfloor \frac{n}{2} \rfloor} = 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0,$$

 but

 $$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{\lfloor \frac{n}{2} \rfloor} \right| = \sum_{n=1}^{\infty} \frac{1}{\lfloor \frac{n}{2} \rfloor}$$

 which is larger than $\sum_{n=1}^{\infty} \frac{1}{n}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Definition. A series \(\sum_{n=1}^{\infty} z_n \) of complex numbers is said to converge absolutely if and only if \(\sum_{n=1}^{\infty} |z_n| \) converges.

1. Absolute convergence strips away everything that is hard about complex numbers and reduces our series to a series of nonnegative numbers.

2. Unfortunately not every convergent series is absolutely convergent:

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\binom{n}{2}} = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \cdots = 0, \text{ but }
\sum_{n=1}^{\infty} \frac{1}{\binom{n}{2}} \text{ which is larger than } \sum_{n=1}^{\infty} \frac{1}{n}, \text{ which diverges.}
\]
Theorem.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges absolutely, then it converges.

Proof.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.

Proof. Let $z_n = x_n + iy_n$.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.

Proof. Let $z_n = x_n + iy_n$. Then $|x_n| \leq |z_n|$ and $|y_n| \leq |z_n|$.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.

Proof. Let $z_n = x_n + iy_n$. Then $|x_n| \leq |z_n|$ and $|y_n| \leq |z_n|$. Thus, if $\sum_{n=1}^{\infty} z_n$ converges absolutely, then by the comparison test for series of real numbers, $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge absolutely.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.

Proof. Let $z_n = x_n + iy_n$. Then $|x_n| \leq |z_n|$ and $|y_n| \leq |z_n|$. Thus, if $\sum_{n=1}^{\infty} z_n$ converges absolutely, then by the comparison test for series of real numbers, $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge absolutely. But then the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge.
Theorem. If the series \(\sum_{n=1}^{\infty} z_n \) of complex numbers converges absolutely, then it converges.

Proof. Let \(z_n = x_n + iy_n \). Then \(|x_n| \leq |z_n| \) and \(|y_n| \leq |z_n| \). Thus, if \(\sum_{n=1}^{\infty} z_n \) converges absolutely, then by the comparison test for series of real numbers, \(\sum_{n=1}^{\infty} x_n \) and \(\sum_{n=1}^{\infty} y_n \) converge absolutely. But then the series \(\sum_{n=1}^{\infty} x_n \) and \(\sum_{n=1}^{\infty} y_n \) converge and hence \(\sum_{n=1}^{\infty} z_n \) converges.
Theorem. If the series $\sum_{n=1}^{\infty} z_n$ of complex numbers converges absolutely, then it converges.

Proof. Let $z_n = x_n + iy_n$. Then $|x_n| \leq |z_n|$ and $|y_n| \leq |z_n|$. Thus, if $\sum_{n=1}^{\infty} z_n$ converges absolutely, then by the comparison test for series of real numbers, $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge absolutely. But then the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge and hence $\sum_{n=1}^{\infty} z_n$ converges. \qed
Example.
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}
$$
Example. For all complex numbers q with $|q| < 1$ we have that
\[\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q} \]

Proof.
Example. For all complex numbers q with $|q| < 1$ we have that

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}$$

Proof.
Example. For all complex numbers q with $|q| < 1$ we have that
\[\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q} \]

Proof.
\[\sum_{n=0}^{\infty} q^n = \lim_{{N \to \infty}} \sum_{n=0}^{N} q^n \]
Example. *For all complex numbers q with \(|q| < 1\) we have that*

\[\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q} \]

Proof.

\[
\sum_{n=0}^{\infty} q^n = \lim_{N \to \infty} \sum_{n=0}^{N} q^n = \lim_{N \to \infty} \frac{1 - q^{N+1}}{1 - q}
\]
Example. For all complex numbers q with $|q| < 1$ we have that
\[
\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}
\]

Proof.
\[
\begin{align*}
\sum_{n=0}^{\infty} q^n &= \lim_{N \to \infty} \sum_{n=0}^{N} q^n \\
&= \lim_{N \to \infty} \frac{1 - q^{N+1}}{1 - q} \\
&= \frac{1 - 0}{1 - q}
\end{align*}
\]
Example. *For all complex numbers* q *with* $|q| < 1$ *we have that*

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}$$

Proof.

$$\sum_{n=0}^{\infty} q^n = \lim_{N \to \infty} \sum_{n=0}^{N} q^n$$

$$= \lim_{N \to \infty} \frac{1 - q^{N+1}}{1 - q}$$

$$= \frac{1 - 0}{1 - q}$$

$$= \frac{1}{1 - q}$$
Example. For all complex numbers q with $|q| < 1$ we have that
\[
\sum_{n=0}^{\infty} q^n = \frac{1}{1 - q}
\]

Proof.

\[
\begin{align*}
\sum_{n=0}^{\infty} q^n &= \lim_{N \to \infty} \sum_{n=0}^{N} q^n \\
&= \lim_{N \to \infty} \frac{1 - q^{N+1}}{1 - q} \\
&= \frac{1 - 0}{1 - q} \\
&= \frac{1}{1 - q}
\end{align*}
\]
Example.
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$
Example. For all complex numbers \(q \) with \(|q| < 1 \) we have that

\[
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^N q^n + q^{N+1} \frac{1}{1-q}
\]

Proof.
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$

Proof.

$$
\sum_{n=0}^{\infty} q^n
$$
Example. For all complex numbers q with $|q| < 1$ we have that

$$\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}$$

Proof.

$$\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n$$
Example. For all complex numbers q with $|q| < 1$ we have that
\[\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}\]

Proof.
\[\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n = \lim_{M \to \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n\]
Example. For all complex numbers q with $|q| < 1$ we have that

$$\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}$$

Proof.

$$\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n = \lim_{M \to \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n$$

$$= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{n=N+1}^{M} q^{n-(N+1)}$$
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$

Proof.

$$
\sum_{n=0}^{\infty} q^n = \lim_{M \rightarrow \infty} \sum_{n=0}^{M} q^n = \lim_{M \rightarrow \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \rightarrow \infty} q^{N+1} \sum_{n=N+1}^{M} q^{n-(N+1)}
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \rightarrow \infty} q^{N+1} \sum_{k=0}^{M-(N+1)} q^k
$$
Example. For all complex numbers q with $|q| < 1$ we have that
\[
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
\]

Proof.
\[
\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n = \lim_{M \to \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n \\
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{n=N+1}^{M} q^{n-(N+1)} \\
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{k=0}^{M-(N+1)} q^k \\
= \sum_{n=0}^{N} q^n + q^{N+1} \sum_{k=0}^{\infty} q^k
\]
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$

Proof.

$$
\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n = \lim_{M \to \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{n=N+1}^{M} q^{n-(N+1)}
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{k=0}^{M-(N+1)} q^k
$$

$$
= \sum_{n=0}^{N} q^n + q^{N+1} \sum_{k=0}^{\infty} q^k = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$
Example. For all complex numbers q with $|q| < 1$ we have that

$$
\sum_{n=0}^{\infty} q^n = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$

Proof.

$$
\sum_{n=0}^{\infty} q^n = \lim_{M \to \infty} \sum_{n=0}^{M} q^n = \lim_{M \to \infty} \sum_{n=0}^{N} q^n + \sum_{n=N+1}^{M} q^n
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{n=N+1}^{M} q^{n-(N+1)}
$$

$$
= \sum_{n=0}^{N} q^n + \lim_{M \to \infty} q^{N+1} \sum_{k=0}^{M-(N+1)} q^k
$$

$$
= \sum_{n=0}^{N} q^n + q^{N+1} \sum_{k=0}^{\infty} q^k = \sum_{n=0}^{N} q^n + q^{N+1} \frac{1}{1-q}
$$
Theorem.
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$.
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$. Then there is a sequence a_n of complex numbers so that for every z in the disk we have that $f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Theorem. Let \(f \) be analytic on a disk \(|z - z_0| \leq R \). Then there is a sequence \(a_n \) of complex numbers so that for every \(z \) in the disk we have that
\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.
\]
Moreover, \(a_n = \frac{f^{(n)}(z_0)}{n!} \).
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$. Then there is a sequence a_n of complex numbers so that for every z in the disk we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Moreover, $a_n = \frac{f^{(n)}(z_0)}{n!}$.
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$. Then there is a sequence a_n of complex numbers so that for every z in the disk we have that $f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n$. Moreover, $a_n = \frac{f^{(n)}(z_0)}{n!}$.
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$. Then there is a sequence a_n of complex numbers so that for every z in the disk we have that $f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n$. Moreover, $a_n = \frac{f^{(n)}(z_0)}{n!}$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Theorem. Let f be analytic on a disk $|z - z_0| \leq R$. Then there is a sequence a_n of complex numbers so that for every z in the disk we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Moreover, $a_n = \frac{f^{(n)}(z_0)}{n!}$.

Series Expansion of Analytic Functions
Proof.
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.
Proof. Let \(C(z_0, R) \) be the circle around \(z_0 \) of radius \(R \), oriented positively.

\[
f(z) = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z} \, d\xi
\]
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.

\[
f(z) = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z} \, d\xi = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} \, d\xi
\]
Proof. Let $C(z_0,R)$ be the circle around z_0 of radius R, oriented positively.

\[
 f(z) = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} d\xi
\]

\[
 = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} d\xi
\]
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.

$$f(z) = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z} \, d\xi = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} \, d\xi$$

$$= \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z_0} \left(1 - \frac{z - z_0}{\xi - z_0}\right) \, d\xi$$

$$= \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{\xi - z_0} \left[\sum_{n=0}^{N} \left(\frac{z - z_0}{\xi - z_0}\right)^n\right]$$
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.

\[
f(z) = \frac{1}{2\pi i} \oint_{C(z_0, R)} \frac{f(\xi)}{\xi - z} \, d\xi = \frac{1}{2\pi i} \oint_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} \, d\xi \\
= \frac{1}{2\pi i} \oint_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi \\
= \frac{1}{2\pi i} \oint_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left[\sum_{n=0}^{N} \left(\frac{z - z_0}{\xi - z_0} \right)^n + \sum_{n=N+1}^{\infty} \left(\frac{z - z_0}{\xi - z_0} \right)^n \right] \, d\xi
\]
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.

\[
f(z) = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z} \, d\xi = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} \, d\xi
\]

\[
= \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi
\]

\[
= \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left[\sum_{n=0}^{N} \left(\frac{z - z_0}{\xi - z_0} \right)^n + \sum_{n=N+1}^{\infty} \left(\frac{z - z_0}{\xi - z_0} \right)^n \right] \, d\xi
\]

\[
= \sum_{n=0}^{N} (z - z_0)^n \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} \, d\xi
\]
Proof. Let $C(z_0, R)$ be the circle around z_0 of radius R, oriented positively.

\[
 f(z) = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z} \, d\xi = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0 - (z - z_0)} \, d\xi
\]

\[
= \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi
\]

\[
= \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left[\sum_{n=0}^{N} \left(\frac{z - z_0}{\xi - z_0} \right)^n + \sum_{n=N+1}^{\infty} \left(\frac{z - z_0}{\xi - z_0} \right)^n \right] \, d\xi
\]

\[
= \sum_{n=0}^{N} (z - z_0)^n \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} \, d\xi
\]

\[
+ \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi
\]
Proof.
Proof. Now note that, because z is fixed and $|z - z_0| < R$
Proof. Now note that, because z is fixed and $|z - z_0| < R = |\xi - z_0|$ for all ξ on $C(z_0, R)$
Proof. Now note that, because \(z \) is fixed and \(|z - z_0| < R = |\xi - z_0| \)
for all \(\xi \) on \(C(z_0, R) \), we have that there is an \(r < 1 \) so that
\[
\left| \frac{z - z_0}{\xi - z_0} \right| < r \quad \text{for all } \xi \text{ on } C(z_0, R).
\]
Proof. Now note that, because \(z \) is fixed and \(|z - z_0| < R = |\xi - z_0| \) for all \(\xi \) on \(C(z_0, R) \), we have that there is an \(r < 1 \) so that
\[
\left| \frac{z - z_0}{\xi - z_0} \right| < r \quad \text{for all} \quad \xi \text{ on } C(z_0, R).
\]
Therefore
\[
\left| \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} d\xi \right| \rightarrow 0 \quad (N \rightarrow \infty)
\]
Proof. Now note that, because z is fixed and $|z - z_0| < R = |\xi - z_0|$ for all ξ on $C(z_0, R)$, we have that there is an $r < 1$ so that

$$\left| \frac{z - z_0}{\xi - z_0} \right| < r$$

for all ξ on $C(z_0, R)$. Therefore

$$\left| \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} d\xi \right|$$

$$\leq \int_{C(z_0, R)} \left| \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right| d|\xi|$$
Proof. Now note that, because \(z \) is fixed and \(|z - z_0| < R = |\xi - z_0|\) for all \(\xi \) on \(C(z_0, R) \), we have that there is an \(r < 1 \) so that

\[
\left| \frac{z - z_0}{\xi - z_0} \right| < r \text{ for all } \xi \text{ on } C(z_0, R).
\]

Therefore

\[
\left| \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi \right|
\]

\[
\leq \int_{C(z_0, R)} \left| \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right| \, d|\xi|
\]

\[
\leq r^{N+1} \int_{C(z_0, R)} \left| \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right| \, d|\xi|
\]
Proof. Now note that, because \(z \) is fixed and \(|z - z_0| < R = |\xi - z_0| \) for all \(\xi \) on \(C(z_0, R) \), we have that there is an \(r < 1 \) so that
\[
\left| \frac{z - z_0}{\xi - z_0} \right| < r \quad \text{for all } \xi \text{ on } C(z_0, R).
\]
Therefore
\[
\left| \int_{C(z_0, R)} \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \, d\xi \right|
\]
\[
\leq \int_{C(z_0, R)} \left| \frac{f(\xi)}{\xi - z_0} \left(\frac{z - z_0}{\xi - z_0} \right)^{N+1} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right| |d| \xi |
\]
\[
\leq r^{N+1} \int_{C(z_0, R)} \left| \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \right| |d| \xi | \to 0 \quad (N \to \infty)
\]
Proof.
Proof. Hence

\[
f(z) = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi
\]

\[= f^{(n)}(z_0) \frac{1}{n!} = a_n\]
Proof. Hence

\[f(z) = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} \ d\xi \]

\[= \frac{f^{(n)}(z_0)}{n!} = a_n \]
Example.
Example. *For all complex numbers* z *we have* $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$
Example. For all complex numbers \(z \) we have
\[
e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}
\]

Recall that for \(f(z) = e^z \) we have \(f'(z) = e^z \) and hence \(f^{(n)}(z) = e^z \) for all \(z \) and all \(n \).
Example. For all complex numbers z we have $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Recall that for $f(z) = e^z$ we have $f'(z) = e^z$ and hence $f^{(n)}(z) = e^z$ for all z and all n. In particular, $f^{(n)}(0) = e^0 = 1$ for all n.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Series Expansion of Analytic Functions
Example. For all complex numbers z we have $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Recall that for $f(z) = e^z$ we have $f'(z) = e^z$ and hence $f^{(n)}(z) = e^z$ for all z and all n. In particular, $f^{(n)}(0) = e^0 = 1$ for all n. Thus, in the preceding theorem, $a_n = \frac{1}{n!}$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Series Expansion of Analytic Functions
Example. For all complex numbers z we have $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Recall that for $f(z) = e^z$ we have $f'(z) = e^z$ and hence $f^{(n)}(z) = e^z$ for all z and all n. In particular, $f^{(n)}(0) = e^0 = 1$ for all n. Thus, in the preceding theorem, $a_n = \frac{1}{n!}$. Because $f(z) = e^z$ is analytic on any disk around the origin
Example. For all complex numbers z we have $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Recall that for $f(z) = e^z$ we have $f'(z) = e^z$ and hence $f^{(n)}(z) = e^z$ for all z and all n. In particular, $f^{(n)}(0) = e^0 = 1$ for all n. Thus, in the preceding theorem, $a_n = \frac{1}{n!}$. Because $f(z) = e^z$ is analytic on any disk around the origin, the expansion $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ is valid for all complex numbers z.
Example.

For all complex numbers z we have

$$
\cos(z) = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{z^{2n}}{(2n)!}
$$

Once more the expansion is about the origin $z=0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z.

Note that $f(z) = \cos(z)$, $f'(z) = -\sin(z)$, $f''(z) = -\cos(z)$, $f'''(z) = \sin(z)$, $f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, $f'''(0) = 0$, $f''''(0) = 1$, and after that, it repeats.

From this pattern, we see that the odd numbered terms a_{2k+1} are all zero. The even numbered terms can be abbreviated as a_{2n}. They are alternatingly positive and negative, which can be encoded with $\left(-1\right)^n$.

Thus $a_{2n} = \left(-1\right)^n \frac{z^{2n}}{(2n)!}$.
Example. For all complex numbers z we have \(\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \)
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$.

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin $z = 0$. From this pattern, we see that the odd numbered terms a_{2k+1} are all zero. The even numbered terms can be abbreviated as a_{2n}. They are alternatingly positive and negative, which can be encoded with $(-1)^n$. Thus $a_{2n} = (-1)^n \frac{(-1)^n}{(2n)!} z^{2n}$.

Bernd Schröder

Series Expansion of Analytic Functions
Example. For all complex numbers z we have

$$
\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}
$$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z.
Example. For all complex numbers z we have
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z)$
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z)$
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z)$
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z)$
Example. *For all complex numbers* \(z \) *we have*

\[\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \]

Once more the expansion is about the origin \(z = 0 \) *and because* \(f(z) = \cos(z) \) *is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers* \(z \). *Note that*

\[f(z) = \cos(z), \quad f'(z) = -\sin(z), \quad f''(z) = -\cos(z), \quad f'''(z) = \sin(z), \quad f''''(z) = \cos(z) \]
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats.
Example. For all complex numbers \(z \) we have
\[
\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}
\]

Once more the expansion is about the origin \(z = 0 \) and because \(f(z) = \cos(z) \) is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers \(z \). Note that \(f(z) = \cos(z) \), \(f'(z) = -\sin(z) \), \(f''(z) = -\cos(z) \), \(f'''(z) = \sin(z) \), \(f''''(z) = \cos(z) \), and after that, it repeats. Thus \(f(0) = 1 \).
Example. For all complex numbers \(z \) we have \(\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \)

Once more the expansion is about the origin \(z = 0 \) and because \(f(z) = \cos(z) \) is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers \(z \). Note that \(f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z) \), and after that, it repeats. Thus \(f(0) = 1, f'(0) = 0 \).
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$.

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1$.
Example. For all complex numbers z we have
\[\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \]

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0$
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, f''''(0) = 1$
Example. \textit{For all complex numbers }z\textit{ we have }$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$\textit{.}

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, f''''(0) = 1$, and after that, it repeats.
Example. For all complex numbers z we have
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z), f'(z) = -\sin(z), f''(z) = -\cos(z), f'''(z) = \sin(z), f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, f''''(0) = 1$, and after that, it repeats. From this pattern, we see that the odd numbered terms a_{2k+1} are all zero.
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$.

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z)$, $f'(z) = -\sin(z)$, $f''(z) = -\cos(z)$, $f'''(z) = \sin(z)$, $f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, $f'''(0) = 0$, $f''''(0) = 1$, and after that, it repeats. From this pattern, we see that the odd numbered terms a_{2k+1} are all zero. The even numbered terms can be abbreviated as a_{2n}.
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z)$, $f'(z) = -\sin(z)$, $f''(z) = -\cos(z)$, $f'''(z) = \sin(z)$, $f''''(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, $f'''(0) = 0$, $f''''(0) = 1$, and after that, it repeats. From this pattern, we see that the odd numbered terms a_{2k+1} are all zero. The even numbered terms can be abbreviated as a_{2n}. They are alternatingly positive and negative, which can be encoded with $(-1)^n$.
Example. For all complex numbers z we have $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$.

Once more the expansion is about the origin $z = 0$ and because $f(z) = \cos(z)$ is analytic on any disk around the origin, whatever expansion we find will be valid for all complex numbers z. Note that $f(z) = \cos(z)$, $f'(z) = -\sin(z)$, $f''(z) = -\cos(z)$, $f'''(z) = \sin(z)$, $f^{''''}(z) = \cos(z)$, and after that, it repeats. Thus $f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, f^{''''}(0) = 1$, and after that, it repeats. From this pattern, we see that the odd numbered terms a_{2k+1} are all zero. The even numbered terms can be abbreviated as a_{2n}. They are alternatingly positive and negative, which can be encoded with $(-1)^n$. Thus $a_{2n} = \frac{(-1)^n}{(2n)!}$.
Example.

For all complex numbers z with $|z| < 1$ we have

$$1 - z = \sum_{n=0}^{\infty} z^n$$

See earlier example!
Example. For all complex numbers z with $|z| < 1$ we have

$$
\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n
$$
Example. For all complex numbers z with $|z| < 1$ we have

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

See earlier example!
Example.

\[f(z) = \frac{1}{z} + z^4 \text{ for } |z| < 1. \]

We will formally deal with negative exponents in these expansions soon.
Example. *Find a power series expansion for* $f(z) = \frac{1}{z + z^4}$ *for* $|z| < 1$.

We will formally deal with negative exponents in these expansions soon.
Example. Find a power series expansion for $f(z) = \frac{1}{z + z^4}$ for $|z| < 1$.

$$\frac{1}{z + z^4}$$
Example. *Find a power series expansion for* \(f(z) = \frac{1}{z + z^4} \) *for* \(|z| < 1 \).

\[
\frac{1}{z + z^4} = \frac{1}{z} \frac{1}{1 + z^3}
\]
Example. Find a power series expansion for \(f(z) = \frac{1}{z + z^4} \) for \(|z| < 1\).

\[
\frac{1}{z + z^4} = \frac{1}{z} \frac{1}{1 + z^3} = -\frac{1}{z} \frac{1}{1 - (-z^3)}
\]
Example. Find a power series expansion for $f(z) = \frac{1}{z + z^4}$ for $|z| < 1$.

\[
\frac{1}{z + z^4} = \frac{1}{z} \frac{1}{1 + z^3} = \frac{1}{z} \frac{1}{1 - (-z^3)} = \frac{1}{z} \sum_{n=0}^{\infty} (-z^3)^n
\]
Example. Find a power series expansion for \(f(z) = \frac{1}{z + z^4} \) for \(|z| < 1 \).

\[
\frac{1}{z + z^4} = \frac{1}{1 + z^3} = \frac{1}{1 - (-z^3)} = \sum_{n=0}^{\infty} (-z^3)^n = \sum_{n=0}^{\infty} (-1)^n z^{3n}
\]

We will formally deal with negative exponents in these expansions soon.
Example. Find a power series expansion for \(f(z) = \frac{1}{z + z^4} \) for \(|z| < 1\).

\[
\frac{1}{z + z^4} = \frac{1}{z} \cdot \frac{1}{1 + z^3} \\
= \frac{1}{z} \cdot \frac{1}{1 - (-z^3)} \\
= \frac{1}{z} \sum_{n=0}^{\infty} (-z^3)^n \\
= \sum_{n=0}^{\infty} \frac{(-1)^n z^{3n}}{z} \\
= \sum_{n=0}^{\infty} (-1)^n z^{3n-1}
\]
Example. Find a power series expansion for \(f(z) = \frac{1}{z + z^4} \) for \(|z| < 1 \).

\[
\frac{1}{z + z^4} = \frac{1}{z} \frac{1}{1 + z^3} = \frac{1}{z} \frac{1}{1 - (-z^3)} = \frac{1}{z} \sum_{n=0}^{\infty} (-z^3)^n = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n z^{3n} = \sum_{n=0}^{\infty} (-1)^n z^{3n-1}
\]

We will formally deal with negative exponents in these expansions soon.