Derivatives of Complex Functions

Bernd Schröder
Introduction
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.

2. In both cases, we want to know what happens when the denominator in the difference quotient \(\frac{f(x+h) - f(x)}{h} \) goes to zero.
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.
2. In both cases, we want to know what happens when the denominator in the difference quotient $\frac{f(x+h) - f(x)}{h}$ goes to zero.
3. Although the visualization is challenging
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.

2. In both cases, we want to know what happens when the denominator in the difference quotient \(\frac{f(x+h) - f(x)}{h} \) goes to zero.

3. Although the visualization is challenging, if not impossible...
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.

2. In both cases, we want to know what happens when the denominator in the difference quotient \(\frac{f(x + h) - f(x)}{h} \) goes to zero.

3. Although the visualization is challenging, if not impossible, we can investigate the same question for functions that map complex numbers to complex numbers.
Introduction

1. The idea for the derivative lies in the desire to compute instantaneous velocities or slopes of tangent lines.

2. In both cases, we want to know what happens when the denominator in the difference quotient $\frac{f(x + h) - f(x)}{h}$ goes to zero.

3. Although the visualization is challenging, if not impossible, we can investigate the same question for functions that map complex numbers to complex numbers.

4. After all, the algebra and the idea of a limit translate to \mathbb{C}.
Definition.
Definition. Let f be defined in a neighborhood of the point z_0.
Definition. Let \(f \) be defined in a neighborhood of the point \(z_0 \). Then \(f \) is called **differentiable** at \(z_0 \).
Definition. Let f be defined in a neighborhood of the point z_0. Then f is called **differentiable** at z_0 if and only if the limit

$$
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

exists.
Definition. Let f be defined in a neighborhood of the point z_0. Then f is called **differentiable** at z_0 if and only if the limit

$$
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

exists.

*In this case we set

$$
f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

*Other notations for the derivative at z_0 are $df/dz(z_0)$ and $Df(z_0)$.\"
Definition. Let f be defined in a neighborhood of the point z_0. Then f is called **differentiable** at z_0 if and only if the limit

$$
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

exists.

In this case we set

$$
f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

and call it the **derivative of f at z_0**.
Definition. Let f be defined in a neighborhood of the point z_0. Then f is called **differentiable** at z_0 if and only if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

In this case we set

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

and call it the **derivative** of f at z_0. Other notations for the derivative at z_0 are $\frac{df}{dz}(z_0)$.
Definition. Let f be defined in a neighborhood of the point z_0. Then f is called **differentiable** at z_0 if and only if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

In this case we set

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

and call it the **derivative** of f at z_0. Other notations for the derivative at z_0 are $\frac{df}{dz}(z_0)$ and $Df(z_0)$.
The function f with an open domain is called **differentiable**
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**).
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain.
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain. The function f is called **entire** if and only if it is differentiable at every $z \in \mathbb{C}$.
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain. The function f is called **entire** if and only if it is differentiable at every $z \in \mathbb{C}$. If f is not differentiable at z_0, but for every neighborhood of z_0 there is a point so that f is analytic in a neighborhood around that point, then z_0 is called a **singularity**.
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain. The function f is called **entire** if and only if it is differentiable at every $z \in \mathbb{C}$. If f is not differentiable at z_0, but for every neighborhood of z_0 there is a point so that f is analytic in a neighborhood around that point, then z_0 is called a **singularity**.

It can be proved that f is differentiable if and only if
\[
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
\] exists.
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain. The function f is called **entire** if and only if it is differentiable at every $z \in \mathbb{C}$. If f is not differentiable at z_0, but for every neighborhood of z_0 there is a point so that f is analytic in a neighborhood around that point, then z_0 is called a **singularity**.

It can be proved that f is differentiable if and only if
\[
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
\]
exists. In this case, the above limit is the derivative.
The function f with an open domain is called **differentiable** (or **holomorphic** or **analytic**) if and only if it is differentiable at every z_0 in its domain. The function f is called **entire** if and only if it is differentiable at every $z \in \mathbb{C}$. If f is not differentiable at z_0, but for every neighborhood of z_0 there is a point so that f is analytic in a neighborhood around that point, then z_0 is called a **singularity**.

It can be proved that f is differentiable if and only if

$$
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
$$

exists. In this case, the above limit is the derivative.

With $\Delta w := f(z_0 + \Delta z) - f(z_0)$ we also write $\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$.
Example.

Compute the derivative of
\[f(z) = z^3. \]

Differentiation Formulas
Example. Compute the derivative of $f(z) = z^3$.
Example. Compute the derivative of $f(z) = z^3$.

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{z^3 + 3z^2 \Delta z + 3z \Delta^2 z + \Delta^3 z - z^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{3z^2 \Delta z + 3z \Delta^2 z + \Delta^3 z}{\Delta z} = \lim_{\Delta z \to 0} (3z^2 + 3z \Delta z + \Delta^2 z) = 3z^2.
\]
Example. Compute the derivative of \(f(z) = z^3 \).

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z}
\]
Example. Compute the derivative of \(f(z) = z^3 \).

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \frac{z^3 + 3z^2 \Delta z + 3z\Delta z^2 + \Delta z^3 - z^3}{\Delta z}
\]
Example. Compute the derivative of $f(z) = z^3$.

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \frac{z^3 + 3z^2 \Delta z + 3z \Delta z^2 + \Delta z^3 - z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \frac{3z^2 \Delta z + 3z \Delta z^2 + \Delta z^3}{\Delta z}
\]
Example. Compute the derivative of \(f(z) = z^3 \).

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z} \\
= \lim_{\Delta z \to 0} \frac{z^3 + 3z^2\Delta z + 3z\Delta^2 z + \Delta^3 z - z^3}{\Delta z} \\
= \lim_{\Delta z \to 0} \frac{3z^2\Delta z + 3z\Delta^2 z + \Delta^3 z}{\Delta z} \\
= \lim_{\Delta z \to 0} \frac{\Delta z(3z^2 + 3z\Delta z + \Delta^2 z)}{\Delta z}
\]
Example. Compute the derivative of $f(z) = z^3$.

$$\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{z^3 + 3z^2 \Delta z + 3z \Delta z^2 + \Delta z^3 - z^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{3z^2 \Delta z + 3z \Delta z^2 + \Delta z^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z \left(3z^2 + 3z \Delta z + \Delta z^2\right)}{\Delta z} = \lim_{\Delta z \to 0} 3z^2 + 3z \Delta z + \Delta z^2$$
Example. Compute the derivative of $f(z) = z^3$.

\[
\frac{dz^3}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^3 - z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \frac{z^3 + 3z^2\Delta z + 3z\Delta z^2 + \Delta z^3 - z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \frac{3z^2\Delta z + 3z\Delta z^2 + \Delta z^3}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} \Delta z \left(3z^2 + 3z\Delta z + \Delta z^2\right)
\]

\[
= \lim_{\Delta z \to 0} \frac{\Delta z (3z^2 + 3z\Delta z + \Delta z^2)}{\Delta z}
\]

\[
= \lim_{\Delta z \to 0} 3z^2 + 3z\Delta z + \Delta z^2
\]

\[
= 3z^2
\]
Example.
Example. Show that $f(z) = \bar{z}$ is not differentiable at any $z_0 \in \mathbb{C}$.
Example. Show that \(f(z) = \bar{z} \) is not differentiable at any \(z_0 \in \mathbb{C} \).

\[
\lim_{\Delta z \to 0} \frac{z_0 + \Delta z - \bar{z_0}}{\Delta z}
\]
Example. Show that \(f(z) = \bar{z} \) is not differentiable at any \(z_0 \in \mathbb{C} \).

\[
\lim_{\Delta z \to 0} \frac{z_0 + \Delta z - \bar{z_0}}{\Delta z} = \lim_{\Delta z \to 0} \frac{z_0 + \Delta z - z_0}{\Delta z}
\]
Example. Show that $f(z) = \bar{z}$ is not differentiable at any $z_0 \in \mathbb{C}$.

$$
\lim_{\Delta z \to 0} \frac{z_0 + \Delta z - \bar{z}_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{z_0 + \Delta z - z_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z}
$$
Example. Show that \(f(z) = \bar{z} \) is not differentiable at any \(z_0 \in \mathbb{C} \).

\[
\lim_{\Delta z \to 0} \frac{z_0 + \Delta z - \bar{z}_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{z_0 + \Delta z - z_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta \bar{z}}{\Delta z}
\]

... which does not exist.
Theorem.
Theorem. *If the complex function* f *is differentiable at* z_0, *then* f *is continuous at* z_0.
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous.
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.
Theorem. *If the complex function* f *is differentiable at* z_0, *then* f *is continuous at* z_0. *Hence, every differentiable function is continuous. However, not every continuous function is differentiable.*

Proof.
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.

Proof. For continuity at z_0 note that

$$0$$
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.

Proof. For continuity at z_0 note that

$$0 = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
Theorem. *If the complex function* f *is differentiable at* z_0, *then* f *is continuous at* z_0. *Hence, every differentiable function is continuous. However, not every continuous function is differentiable.*

Proof. For continuity at z_0 note that

$$0 = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.

Proof. For continuity at z_0 note that

$$0 = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) \frac{f(z) - f(z_0)}{z - z_0}$$

$$= \lim_{z \to z_0} f(z) - f(z_0).$$
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.

Proof. For continuity at z_0 note that

$$0 = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} f(z) - f(z_0).$$

For the last statement, consider $f(z) = \bar{z}$.
Theorem. If the complex function f is differentiable at z_0, then f is continuous at z_0. Hence, every differentiable function is continuous. However, not every continuous function is differentiable.

Proof. For continuity at z_0 note that

$$\lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} f(z) - f(z_0).$$

For the last statement, consider $f(z) = \bar{z}$.

\[\blacksquare\]
Theorem.
Theorem. Let f and g be differentiable at z_0 and let $c \in \mathbb{C}$.
Theorem. Let f and g be differentiable at z_0 and let $c \in \mathbb{C}$. Then the functions $f + g$, $f - g$ and cf are all differentiable at z_0.
Theorem. Let \(f \) and \(g \) be differentiable at \(z_0 \) and let \(c \in \mathbb{C} \). Then the functions \(f + g \), \(f - g \) and \(cf \) are all differentiable at \(z_0 \) and

\[
(f + g)'(z_0) = f'(z_0) + g'(z_0),
\]

\[
(f - g)'(z_0) = f'(z_0) - g'(z_0),
\]

\[
(cf)'(z_0) = cf'(z_0).
\]
Theorem. Let f and g be differentiable at z_0 and let $c \in \mathbb{C}$. Then the functions $f + g$, $f - g$ and cf are all differentiable at z_0 and

$$ (f + g)'(z_0) = f'(z_0) + g'(z_0), $$

$$ (f - g)'(z_0) = f'(z_0) - g'(z_0), $$
Theorem. Let f and g be differentiable at z_0 and let $c \in \mathbb{C}$. Then the functions $f + g$, $f - g$ and cf are all differentiable at z_0 and

\[
(f + g)'(z_0) = f'(z_0) + g'(z_0),
\]
\[
(f - g)'(z_0) = f'(z_0) - g'(z_0),
\]
\[
(cf)'(z_0) = cf'(z_0).
\]
Proof (addition only).
Proof (addition only).

\[(f + g)'(z_0)\]
Proof (addition only).

\[(f + g)'(z_0)\]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0}\]
Proof (addition only).

\[(f + g)'(z_0)\]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0) + g(z) - g(z_0)}{z - z_0} = f'(z_0) + g'(z_0)\]
Proof (addition only).

\[(f + g)'(z_0)\]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0}\]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0) + g(z) - g(z_0)}{z - z_0}\]
Proof (addition only).

\[(f + g)'(z_0)\]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0} \]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0) + g(z) - g(z_0)}{z - z_0} \]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} + \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} \]
Proof (addition only).

\[(f + g)'(z_0)\]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0}\]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0) + g(z) - g(z_0)}{z - z_0}\]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} + \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}\]

\[= f'(z_0) + g'(z_0)\]
Proof (addition only).

\[(f + g)'(z_0) \]

\[= \lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0} \]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0) + g(z) - g(z_0)}{z - z_0} \]

\[= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} + \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} \]

\[= f'(z_0) + g'(z_0) \]

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Derivatives of Complex Functions
Theorem.
Theorem. Product and Quotient Rule. Let f and g be differentiable at z_0.

Moreover, if $g(z_0) \neq 0$, then the quotient $\frac{f}{g}$ is differentiable at z_0 with

$$
\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{g(z_0)^2}.
$$
Theorem. Product and Quotient Rule. Let \(f \) and \(g \) be differentiable at \(z_0 \). Then \(fg \) is differentiable at \(x \)
Theorem. Product and Quotient Rule. Let \(f \) and \(g \) be differentiable at \(z_0 \). Then \(fg \) is differentiable at \(x \) with

\[
(fg)'(z_0) = f'(z_0)g(z_0) + g'(z_0)f(z_0).
\]
Theorem. Product and Quotient Rule. Let f and g be differentiable at z_0. Then fg is differentiable at x with

$$(fg)'(z_0) = f'(z_0)g(z_0) + g'(z_0)f(z_0).$$

Moreover, if $g(z_0) \neq 0$, then the quotient $\frac{f}{g}$ is differentiable at z_0.
Theorem. **Product and Quotient Rule.** Let \(f \) and \(g \) be differentiable at \(z_0 \). Then \(fg \) is differentiable at \(x \) with

\[
(fg)'(z_0) = f'(z_0)g(z_0) + g'(z_0)f(z_0).
\]

Moreover, if \(g(z_0) \neq 0 \), then the quotient \(\frac{f}{g} \) is differentiable at \(z_0 \) with

\[
\left(\frac{f}{g} \right)'(z_0) = \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{(g(z_0))^2}.
\]
Proof (quotient rule only).
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)} - \frac{f(z_0)}{g(z_0)} \]

\[
= \lim_{z \to z_0} \frac{1}{g(z)} \frac{f(z) - f(z_0)}{z - z_0}
\]
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)} - \lim_{z \to z_0} \frac{f(z_0)}{g(z_0)}
\]
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{\frac{f}{g}(z) - \frac{f}{g}(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\frac{f(z)}{g(z)} - \frac{f(z_0)}{g(z_0)}}{z - z_0} = \lim_{z \to z_0} \frac{\frac{f(z)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)}}{z - z_0}
\]
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z)} \cdot \frac{g(z)}{g(z_0)} - \frac{f(z_0)g(z) - f(z)g(z_0)}{g(z)g(z_0)} = \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(f(z)g(z_0) - f(z_0)g(z) \right)
\]
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)} \cdot \frac{g(z)g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z)g(z_0) - f(z_0)g(z) + f(z_0)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)} = \lim_{z \to z_0} \frac{f(z)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)} \cdot \frac{g(z)g(z_0)}{z - z_0}.
\]
Proof (quotient rule only).

\[
\lim_{{z \to z_0}} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{{z \to z_0}} \frac{f(z)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)}
\]

\[
= \lim_{{z \to z_0}} \frac{f(z)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)}
\]

\[
= \lim_{{z \to z_0}} \frac{f(z)g(z_0) - f(z_0)g(z_0) + f(z_0)g(z_0) - f(z_0)g(z)}{g(z)g(z_0)}
\]

\[
= \lim_{{z \to z_0}} \frac{f(z)g(z_0) - f(z_0)g(z_0) - (f(z_0)g(z) - f(z_0)g(z_0))}{{z - z_0}}
\]
Proof (quotient rule only).

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} \cdot \frac{g(z) g(z_0)}{g(z) g(z_0)} = \lim_{z \to z_0} \frac{f(z) g(z_0) - f(z_0) g(z)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) g(z_0) - f(z_0) g(z) + f(z_0) g(z_0) - f(z_0) g(z)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) g(z_0) - f(z_0) g(z_0) - f(z_0) g(z_0) + f(z_0) g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) g(z_0) - f(z_0) g(z_0) - f(z_0) g(z_0) + f(z_0) g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) g(z_0) - f(z_0) g(z_0)}{z - z_0} - \frac{f(z_0) g(z) - f(z_0) g(z_0)}{z - z_0}
\]
Proof (quotient rule cont.).
Proof (quotient rule cont.).

\[
\lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z)g(z_0) - f(z_0)g(z)}{z - z_0} - \frac{f(z_0)g(z) - f(z_0)g(z_0)}{z - z_0} \right)
\]
Proof (quotient rule cont.).

\[
\lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z)g(z_0) - f(z_0)g(z_0)}{z - z_0} - \frac{f(z_0)g(z) - f(z_0)g(z_0)}{z - z_0} \right)
\]

\[= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z) - f(z_0)}{z - z_0} g(z_0) - \frac{g(z) - g(z_0)}{z - z_0} f(z_0) \right)\]
Proof (quotient rule cont.).

\[
\lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z)g(z_0) - f(z_0)g(z_0)}{z - z_0} - \frac{f(z_0)g(z) - f(z_0)g(z_0)}{z - z_0} \right)
\]

\[
= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z) - f(z_0)}{z - z_0} g(z_0) - \frac{g(z) - g(z_0)}{z - z_0} f(z_0) \right)
\]

\[
= \frac{1}{(g(z_0))^2} \left(f'(z_0)g(z_0) - g'(z_0)f(z_0) \right)
\]
Proof (quotient rule cont.).

$$
\lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z)g(z_0) - f(z_0)g(z_0)}{z - z_0} \right)
$$

\[= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z) - f(z_0)}{z - z_0} g(z_0) - \frac{g(z) - g(z_0)}{z - z_0} f(z_0) \right) \]

\[= \frac{1}{(g(z_0))^2} \left(f'(z_0)g(z_0) - g'(z_0)f(z_0) \right) \]

\[= \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{(g(z_0))^2}. \]
Proof (quotient rule cont.).

\[
\lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z)g(z_0) - f(z_0)g(z)}{z - z_0} - \frac{f(z_0)g(z) - f(z_0)g(z_0)}{z - z_0} \right)
\]

\[
= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \left(\frac{f(z) - f(z_0)}{z - z_0} g(z_0) - \frac{g(z) - g(z_0)}{z - z_0} f(z_0) \right)
\]

\[
= \frac{1}{(g(z_0))^2} \left(f'(z_0)g(z_0) - g'(z_0)f(z_0) \right)
\]

\[
= \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{(g(z_0))^2}.
\]
Theorem.
Theorem. Chain Rule.
Theorem. Chain Rule. Let f, g be complex functions and let z_0 be such that g is differentiable at z_0 and f is differentiable at $g(z_0)$.

then $f \circ g$ is differentiable at z_0 and the derivative is $$(f \circ g)'(z_0) = f'(g(z_0))g'(z_0).$$
Theorem. Chain Rule. Let f, g be complex functions and let z_0 be such that g is differentiable at z_0 and f is differentiable at $g(z_0)$. Then $f \circ g$ is differentiable at z_0.
Theorem. Chain Rule. Let f, g be complex functions and let z_0 be such that g is differentiable at z_0 and f is differentiable at $g(z_0)$. Then $f \circ g$ is differentiable at z_0 and the derivative is

$$(f \circ g)'(z_0) = f'(g(z_0))g'(z_0).$$
Proof (small technicality ignored).
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0}
\]
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0} = f'(g(z_0)) g'(z_0).
\]
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0}
\]
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} =
\lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
f'(g(z_0)) \cdot g'(z_0).
\]
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{z - z_0} \cdot \frac{g(z) - g(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \lim_{z \to z_0} \frac{f(u) - f(g(z_0))}{u - g(z_0)} \cdot \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \frac{f'(g(z_0))}{g'(z_0)}.
\]
Proof (small technicality ignored).

\[
\lim_{{z \to z_0}} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} = \lim_{{z \to z_0}} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
= \lim_{{z \to z_0}} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \lim_{{z \to z_0}} \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
= \lim_{{u \to g(z_0)}} \frac{f(u) - f(g(z_0))}{u - g(z_0)} \cdot \lim_{{z \to z_0}} \frac{g(z) - g(z_0)}{z - z_0}
\]

\[
= f'(g(z_0)) g'(z_0).
\]
Proof (small technicality ignored).

\[
\lim_{z \to z_0} \frac{f \circ g(z) - f \circ g(z_0)}{z - z_0} = \\
= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \frac{g(z) - g(z_0)}{z - z_0} = \\
= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \cdot \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \\
= \lim_{u \to g(z_0)} \frac{f(u) - f(g(z_0))}{u - g(z_0)} \cdot \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \\
= f'(g(z_0)) g'(z_0). \]
Example

Find the derivative of \(f(x) = (iz + 4)^3(z^2 + 1)^2 \).

\[
d_{dz}(iz + 4)^3(z^2 + 1)^2 = 3(iz + 4)^2i(z^2 + 1)^2 + 4(z + 4)^3(2z)(z^2 + 1)^2 = (iz + 4)^2(z^2 + 1)(3iz^2 + 3i + 4iz^2 + 16z)
\]
Example (derivatives work just like they did in calculus).
Example (derivatives work just like they did in calculus). Find the derivative of $f(x) = (iz + 4)^3 (z^2 + 1)^2$.
Example (derivatives work just like they did in calculus). Find the derivative of $f(x) = (iz + 4)^3 (z^2 + 1)^2$.

$$\frac{d}{dz} (iz + 4)^3 (z^2 + 1)^2$$
Example (derivatives work just like they did in calculus). Find the derivative of \(f(x) = (iz + 4)^3 \left(z^2 + 1\right)^2 \).

\[
\frac{d}{dz} \left(iz + 4\right)^3 \left(z^2 + 1\right)^2 = 3 (iz + 4)^2 i \left(z^2 + 1\right)^2
\]
Example (derivatives work just like they did in calculus). Find the derivative of \(f(x) = (iz + 4)^3 (z^2 + 1)^2 \).

\[
\frac{d}{dz} (iz + 4)^3 (z^2 + 1)^2

= 3 (iz + 4)^2 i (z^2 + 1)^2 + (iz + 4)^3 2 (z^2 + 1) 2z
\]
Example (derivatives work just like they did in calculus). Find the derivative of \(f(x) = (iz + 4)^3 (z^2 + 1)^2 \).

\[
\frac{d}{dz} (iz + 4)^3 (z^2 + 1)^2 \\
= 3 (iz + 4)^2 i (z^2 + 1)^2 + (iz + 4)^3 2 (z^2 + 1) 2z \\
= 3i (iz + 4)^2 (z^2 + 1)^2 + 4z (iz + 4)^3 (z^2 + 1)
\]
Example (derivatives work just like they did in calculus). Find the derivative of $f(x) = (iz + 4)^3 (z^2 + 1)^2$.

\[
\frac{d}{dz} (iz + 4)^3 (z^2 + 1)^2
\]

\[
= 3(iz + 4)^2 i (z^2 + 1)^2 + (iz + 4)^3 2 (z^2 + 1) 2z
\]

\[
= 3i(iz + 4)^2 (z^2 + 1)^2 + 4z (iz + 4)^3 (z^2 + 1)
\]

\[
= (iz + 4)^2 (z^2 + 1) (3iz^2 + 3i + 4iz^2 + 16z)
\]
Example (derivatives work just like they did in calculus). Find the derivative of \(f(x) = (iz + 4)^3 (z^2 + 1)^2 \).

\[
\frac{d}{dz} (iz + 4)^3 (z^2 + 1)^2 = 3 (iz + 4)^2 i (z^2 + 1)^2 + (iz + 4)^3 2 (z^2 + 1) 2z \\
= 3i (iz + 4)^2 (z^2 + 1)^2 + 4z (iz + 4)^3 (z^2 + 1) \\
= (iz + 4)^2 (z^2 + 1) (3iz^2 + 3i + 4iz^2 + 16z) \\
= (iz + 4)^2 (z^2 + 1) (7iz^2 + 16z + 3i)
\]