Fundamentals of Mathematics

Bernd Schröder
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
2. Algebra and Topology?
3. Set Theory and Logic?
4. There really isn't a definite answer.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Fundamentals of Mathematics
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
2. Algebra and Topology?
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
2. Algebra and Topology?
3. Set Theory and Logic?
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
2. Algebra and Topology?
3. Set Theory and Logic?
4. There really isn’t a definite answer.
What are the Fundamentals of Mathematics?

1. Linear Algebra and Analysis?
2. Algebra and Topology?
3. Set Theory and Logic?
4. There really isn’t a definite answer. And there should not be.
But on Certain Things There is Agreement
But on Certain Things There is Agreement

1. Mathematicians do proofs
But on Certain Things There is Agreement

1. Mathematicians do proofs, and proofs require logic.
But on Certain Things There is Agreement

1. Mathematicians do proofs, and proofs require logic.
2. Everything in mathematics can be constructed from the axioms of set theory
But on Certain Things There is Agreement

1. Mathematicians do proofs, and proofs require logic.
2. Everything in mathematics can be constructed from the axioms of set theory, and sets are used throughout mathematics.
But on Certain Things There is Agreement

1. Mathematicians do proofs, and proofs require logic.
2. Everything in mathematics can be constructed from the axioms of set theory, and sets are used throughout mathematics.
3. The familiar number systems are also used throughout mathematics.
So It Makes Sense To Have A First Proof Class That Covers
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs

... and if things go really fast, the unsolvability of the quintic with radicals is really neat. (Otherwise, read it and watch the presentations at your leisure.)
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
3. Sets
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
3. Sets
4. Number Systems
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
3. Sets
4. Number Systems

... and if things go really fast
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
3. Sets
4. Number Systems

... and if things go really fast, the unsolvability of the quintic with radicals is really neat.
So It Makes Sense To Have A First Proof Class That Covers

1. Proofs (can you really cover that?)
2. Logic
3. Sets
4. Number Systems

... and if things go really fast, the unsolvability of the quintic with radicals is really neat.

(Otherwise, read it and watch the presentations at your leisure.)
As We Go Through These Topics, We Will Pay Specific Attention To
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits)
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method)
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions (it turns out that abstraction makes us more efficient)
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions (it turns out that abstraction makes us more efficient)
4. Proofs of results that are familiar from elementary through high school
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions (it turns out that abstraction makes us more efficient)
4. Proofs of results that are familiar from elementary through high school (divisibility by 3
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions (it turns out that abstraction makes us more efficient)
4. Proofs of results that are familiar from elementary through high school (divisibility by 3, writing numbers in different bases
As We Go Through These Topics, We Will Pay Specific Attention To

1. Proof writing (standard proof methods)
2. Applications (digital circuits, scientific method, public key encryption)
3. Useful abstractions (it turns out that abstraction makes us more efficient)
4. Proofs of results that are familiar from elementary through high school (divisibility by 3, writing numbers in different bases, quadratic formula)
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
 4.3 But we will go through arguments that are much longer than that.
5. Be patient. One problem in this course can take longer than five problems in a calculus class. (So don't get frustrated either.)
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results *are* the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results *are* the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
 4.3 But we will go through arguments that are much longer than that.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.

2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.

3. Keep the book and notes on key definitions handy.

4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
 4.3 But we will go through arguments that are much longer than that.

5. Be patient.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.
2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.
3. Keep the book and notes on key definitions handy.
4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
 4.3 But we will go through arguments that are much longer than that.
5. Be patient. One problem in this course can take longer than five problems in a calculus class.
What Will Help You “Get Through”?

1. Biggest change: We cannot simply mimic examples any more: The proofs of the results are the examples.

2. Total recall would help, but that is not an option for most of us. And it may not be as useful as we may think.

3. Keep the book and notes on key definitions handy.

4. Structure your thinking.
 4.1 Segmenting of arguments helps see the forest for the trees.
 4.2 Presentation space is limited to one pane.
 4.3 But we will go through arguments that are much longer than that.

5. Be patient. One problem in this course can take longer than five problems in a calculus class. (So don’t get frustrated either.)