Counting Techniques

Bernd Schröder
Equally Likely Outcomes

Permutations and Combinations

Examples

Introduction

1. In certain situations, all outcomes are equally likely:
 - Flipping a coin
 - Rolling dice
 - Dealing cards
 - Pulling different colored balls from an urn (the last one is a standard thought experiment in probability).

2. That means that the probability of an event is the number of elements in the event divided by the size of the sample space.
Introduction

1. In certain situations, all outcomes are equally likely
Introduction

1. In certain situations, all outcomes are equally likely:
 Flipping a coin
Introduction

1. In certain situations, all outcomes are equally likely: Flipping a coin, rolling dice
Introduction

1. In certain situations, all outcomes are equally likely:
 Flipping a coin, rolling dice, dealing cards
Introduction

1. In certain situations, all outcomes are equally likely: Flipping a coin, rolling dice, dealing cards, pulling different colored balls from an urn.
Introduction

1. In certain situations, all outcomes are equally likely: Flipping a coin, rolling dice, dealing cards, pulling different colored balls from an urn (the last one is a standard thought experiment in probability).
Introduction

1. In certain situations, all outcomes are equally likely: Flipping a coin, rolling dice, dealing cards, pulling different colored balls from an urn (the last one is a standard thought experiment in probability).

2. That means that the probability of an event is the number of elements in the event divided by the size of the sample space.
Introduction
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT).
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is \(\frac{2}{4}\).
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is \(\frac{2}{4} = \frac{1}{2} \).
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is $\frac{2}{4} = \frac{1}{2}$, because we are interested in the two outcomes TH, HT.
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is $\frac{2}{4} = \frac{1}{2}$, because we are interested in the two outcomes TH, HT.

4. Similarly, the probability of rolling a total of 9 with two dice is $\frac{4}{36} = \frac{1}{9}$.
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is \(\frac{2}{4} = \frac{1}{2} \), because we are interested in the two outcomes TH, HT.

4. Similarly, the probability of rolling a total of 9 with two dice is \(\frac{4}{36} = \frac{1}{9} \), because there are \(6 \times 6 = 36 \) total outcomes.
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is \(\frac{2}{4} = \frac{1}{2} \), because we are interested in the two outcomes TH, HT.

4. Similarly, the probability of rolling a total of 9 with two dice is \(\frac{4}{36} = \frac{1}{9} \), because there are \(6 \times 6 = 36 \) total outcomes (note that although we are only interested in the total points, the dice must be considered separately).
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is $\frac{2}{4} = \frac{1}{2}$, because we are interested in the two outcomes TH, HT.

4. Similarly, the probability of rolling a total of 9 with two dice is $\frac{4}{36} = \frac{1}{9}$, because there are $6 \times 6 = 36$ total outcomes (note that although we are only interested in the total points, the dice must be considered separately) and 4 outcomes we are interested in.
Introduction

3. For example, for two consecutive coin flips, there are 4 possible outcomes (HH, TH, HT, TT). So the probability of getting one head and one tail (total, disregard the order) in consecutive coin flips is \(\frac{2}{4} = \frac{1}{2} \), because we are interested in the two outcomes TH, HT.

4. Similarly, the probability of rolling a total of 9 with two dice is \(\frac{4}{36} = \frac{1}{9} \), because there are \(6 \times 6 = 36 \) total outcomes (note that although we are only interested in the total points, the dice must be considered separately) and 4 outcomes we are interested in (6 + 3, 5 + 4, 4 + 5, 3 + 6).
Definition.
Definition. The outcomes in an event A for which we want to compute the probability are also called favorable outcomes.
Definition. The outcomes in an event A for which we want to compute the probability are also called favorable outcomes.

Theorem.
Definition. The outcomes in an event A for which we want to compute the probability are also called **favorable outcomes**.

Theorem. Let \mathcal{S} be a sample space with a probability function P so that every individual outcome/element in \mathcal{S} has the same probability.

$$P(A) = \frac{|A|}{|\mathcal{S}|} = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}$$
Definition. The outcomes in an event A for which we want to compute the probability are also called **favorable outcomes**.

Theorem. Let \mathcal{I} be a sample space with a probability function P so that every individual outcome/element in \mathcal{I} has the same probability. Then the probability of an event A is equal to the number of elements in A divided by the number of elements in \mathcal{I}.

$$P(A) = \frac{|A|}{|\mathcal{I}|} = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}$$
Definition. The outcomes in an event A for which we want to compute the probability are also called **favorable outcomes**.

Theorem. Let \mathcal{S} be a sample space with a probability function P so that every individual outcome/element in \mathcal{S} has the same probability. Then the probability of an event A is equal to the number of elements in A divided by the number of elements in \mathcal{S}. In other words, when all outcomes are equally likely, the probability of an event is the number of favorable outcomes divided by the total number of outcomes.
Definition. The outcomes in an event A for which we want to compute the probability are also called favorable outcomes.

Theorem. Let \mathcal{S} be a sample space with a probability function P so that every individual outcome/element in \mathcal{S} has the same probability. Then the probability of an event A is equal to the number of elements in A divided by the number of elements in \mathcal{S}. In other words, when all outcomes are equally likely, the probability of an event is the number of favorable outcomes divided by the total number of outcomes.

$$P(A)$$
Definition. The outcomes in an event A for which we want to compute the probability are also called favorable outcomes.

Theorem. Let \mathcal{I} be a sample space with a probability function P so that every individual outcome/element in \mathcal{I} has the same probability. Then the probability of an event A is equal to the number of elements in A divided by the number of elements in \mathcal{I}. In other words, when all outcomes are equally likely, the probability of an event is the number of favorable outcomes divided by the total number of outcomes.

$$P(A) = \frac{|A|}{|\mathcal{I}|}$$
Definition. The outcomes in an event A for which we want to compute the probability are also called **favorable outcomes**.

Theorem. Let \mathcal{S} be a sample space with a probability function P so that every individual outcome/element in \mathcal{S} has the same probability. Then the probability of an event A is equal to the number of elements in A divided by the number of elements in \mathcal{S}. In other words, when all outcomes are equally likely, the probability of an event is the number of favorable outcomes divided by the total number of outcomes.

$$P(A) = \frac{|A|}{|\mathcal{S}|} = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}$$
Definition.
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).
Definition. *To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).*

Example.
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts?
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements \((x_1, \ldots, x_k)\).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert).
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert). There are
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements \((x_1, \ldots, x_k)\).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert). There are 6
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert). There are $6 \cdot 4$
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements \((x_1, \ldots, x_k)\).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert). There are \(6 \cdot 4 \cdot 10\)
Definition. To keep track of outcomes that happen in a certain order, we can consider ordered k-tuples of elements (x_1, \ldots, x_k).

Example. How many meals can be composed if there are 6 choices for appetizers, 4 choices for the main course and 10 choices for desserts? We are looking at triples (appetizer, main course, dessert). There are $6 \cdot 4 \cdot 10 = 240$ of them.
Theorem.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k \)th object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards:
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card [52 possibilities], second card [51 possibilities], third card [50 possibilities], fourth card [49 possibilities], fifth card [48 possibilities]), for a total of $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 = 311,875,200$ possible ways the deal could happen.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, ...

Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k^{th} \) object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card)
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k^{th} \) object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card).
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card).
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k \)th object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card...
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card,
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k^{th} \) object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: \((\text{first card}, \text{second card}, \text{third card}, \text{fourth card}, \text{fifth card})\). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card.
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k^{th} \) object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of...
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k \)th object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of 52
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of $52 \cdot 51$.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the k^{th} object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of $52 \cdot 51 \cdot 50$.
Theorem. If there are n_1 ways to choose the first object, n_2 ways to choose the second, etc. and n_k ways to choose the kth object, then there are $n_1 \cdot n_2 \cdots n_k$ ordered k-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of $52 \cdot 51 \cdot 50 \cdot 49$.
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k^{th} \) object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of \(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \).
Theorem. If there are \(n_1 \) ways to choose the first object, \(n_2 \) ways to choose the second, etc. and \(n_k \) ways to choose the \(k \)th object, then there are \(n_1 \cdot n_2 \cdots n_k \) ordered \(k \)-tuples.

Example. When 5 cards are dealt in a poker hand, the deal can be modeled as an ordered 5-tuple of cards: (first card, second card, third card, fourth card, fifth card). If we consider a deal in which all cards are given to you right away (like in a video poker machine), then there are 52 possibilities for the first card, 51 possibilities for the second card, 50 possibilities for the third card, 49 possibilities for the fourth card, 48 possibilities for the fifth card, for a total of \(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 = 311,875,200 \) possible ways the deal could happen.
Definition.

An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a permutation of size \(k \) of \(n \) objects.

The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).

Definition.

For any nonnegative integer \(m \), we define the factorial to be:

\[
\begin{align*}
0! &= 1, \\
m! &= m \cdot (m-1) \cdot (m-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1, \\
&\quad \text{for } m > 0.
\end{align*}
\]

Theorem.

\[
P_{k,n} = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!},
\]

where \(n \) ≥ \(k \).

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Counting Techniques
Definition. An ordered sequence of k objects out of n distinct objects is called a **permutation** of size k of n objects.
Definition. An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a **permutation** of size \(k \) of \(n \) objects. The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition.
Definition. An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a **permutation** of size \(k \) of \(n \) objects. The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).

Definition. For any nonnegative integer \(m \), we define the factorial to be

\[
m! = m \cdot (m-1) \cdot (m-2) \cdots 3 \cdot 2 \cdot 1.
\]

We also define \(0! = 1 \). (This makes certain formulas consistently applicable for "borderline cases".)

Theorem.

\[
P_{k,n} = n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) = \frac{n!}{(n-k)!}.
\]
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition. For any nonnegative integer m, we define the factorial to be $m! = m \cdot (m-1) \cdot (m-2) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$. We also define $0! = 1$. (This makes certain formulas consistently applicable for "borderline cases").

Theorem. $P_{k,n} = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1) = \frac{n!}{(n-k)!}$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Counting Techniques
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition. For any nonnegative integer m, we define the factorial to be $m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1$.
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition. For any nonnegative integer m, we define the factorial to be $m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1$. We also define $0! = 1$.
Definition. An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a permutation of size \(k \) of \(n \) objects. The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).

Definition. For any nonnegative integer \(m \), we define the factorial to be \(m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1 \). We also define \(0! = 1 \). (This makes certain formulas consistently applicable for “borderline cases”.)
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition. For any nonnegative integer m, we define the factorial to be $m! := m \cdot (m-1) \cdot (m-2) \cdots 3 \cdot 2 \cdot 1$. We also define $0! = 1$. (This makes certain formulas consistently applicable for "borderline cases".)

Theorem.
Definition. An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a **permutation** of size \(k \) of \(n \) objects. The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).

Definition. For any nonnegative integer \(m \), we define the **factorial** to be \(m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1 \). We also define \(0! = 1 \). (This makes certain formulas consistently applicable for “borderline cases”.)

Theorem. \(P_{k,n} \)
Definition. An ordered sequence of k objects out of n distinct objects is called a permutation of size k of n objects. The number of permutations of size k of n objects is denoted $P_{k,n}$.

Definition. For any nonnegative integer m, we define the factorial to be $m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1$. We also define $0! = 1$. (This makes certain formulas consistently applicable for “borderline cases”.)

Theorem. $P_{k,n} = n \cdot (n - 1) \cdot (n - 2) \cdots (n - k + 1)$
Definition. An ordered sequence of \(k \) objects out of \(n \) distinct objects is called a **permutation** of size \(k \) of \(n \) objects. The number of permutations of size \(k \) of \(n \) objects is denoted \(P_{k,n} \).

Definition. For any nonnegative integer \(m \), we define the **factorial** to be
\[
m! := m \cdot (m - 1) \cdot (m - 2) \cdots 3 \cdot 2 \cdot 1.
\]
We also define \(0! = 1 \). (This makes certain formulas consistently applicable for “borderline cases”.)

Theorem.
\[
P_{k,n} = n \cdot (n - 1) \cdot (n - 2) \cdots (n - k + 1) = \frac{n!}{(n - k)!}
\]
Example.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand. But this is not the number of different 5 card hands.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand.

But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter.
Example. There are $P_{5,52} = \frac{52!}{47!}$ ways to deal a 5 card hand.
But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter.
As long as order matters, every combination that we commonly consider a “hand” is counted $5!$ times.
Example. There are $P_{5,52} = \frac{52!}{47!}$ ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted 5! times.

Definition.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted 5! times.

Definition. An unordered subset of \(k \) objects out of \(n \) is called a combination.
Example. There are $P_{5,52} = \frac{52!}{47!}$ ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted $5!$ times.

Definition. An unordered subset of k objects out of n is called a combination. The number of combinations is denoted $\binom{n}{k} = C_{k,n}$.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand.
But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted \(5! \) times.

Definition. An unordered subset of \(k \) objects out of \(n \) is called a combination. The number of combinations is denoted \(\binom{n}{k} = C_{k,n} \) and called the binomial coefficient, pronounced “\(n \) choose \(k \)”.
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted \(5!\) times.

Definition. An unordered subset of \(k \) objects out of \(n \) is called a combination. The number of combinations is denoted \(\binom{n}{k} = C_{k,n} \) and called the *binomial coefficient*, pronounced “\(n \) choose \(k \)”.

Theorem.
Equally Likely Outcomes

Equally Likely Outcomes

Example. There are $P_{5,52} = \frac{52!}{47!}$ ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted $5!$ times.

Definition. An unordered subset of k objects out of n is called a combination. The number of combinations is denoted $\binom{n}{k} = C_{k,n}$ and called the binomial coefficient, pronounced “n choose k”.

Theorem. $\binom{n}{k}$
Example. There are $P_{5,52} = \frac{52!}{47!}$ ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted $5!$ times.

Definition. An unordered subset of k objects out of n is called a combination. The number of combinations is denoted \(\binom{n}{k} = C_{k,n} \) and called the binomial coefficient, pronounced “n choose k.”

Theorem. \(\binom{n}{k} = \frac{P_{k,n}}{k!} \)
Example. There are \(P_{5,52} = \frac{52!}{47!} \) ways to deal a 5 card hand. But this is not the number of different 5 card hands, because for a poker hand, the order of the deal does not matter. As long as order matters, every combination that we commonly consider a “hand” is counted 5! times.

Definition. An unordered subset of \(k \) objects out of \(n \) is called a combination. The number of combinations is denoted
\[
\binom{n}{k} = C_{k,n} \text{ and called the binomial coefficient, pronounced “n choose k”.
}\]

Theorem. \(\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!} \).
Example.

The number of possible 5 card hands out of a 52 card deck is \(\binom{52}{5} = \frac{52!}{5!47!} = 2,598,960 \).
Example. The number of possible 5 card hands out of a 52 card deck is \(\binom{52}{5} \).
Example. The number of possible 5 card hands out of a 52 card deck is
\[
\binom{52}{5} = \frac{52!}{5!47!}
\]
Example. The number of possible 5 card hands out of a 52 card deck is \(\binom{52}{5} = \frac{52!}{5!47!} = 2,598,960. \)
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
3. There are 4 suits.
4. So the number of possible flushes is \(4 \cdot \binom{13}{5} = 5148 \).
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
3. There are 4 suits.
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
3. There are 4 suits.
4. So the number of possible flushes is
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
3. There are 4 suits.
4. So the number of possible flushes is 4
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \)
 ways to get all 5 cards from that suit.
3. There are 4 suits.
4. So the number of possible flushes is \(4 \cdot \binom{13}{5} \)
How Many 5 Card Hands are Made up Entirely of Cards in the Same Suit (Flushes)?

1. Each suit has 13 cards.
2. If all cards come from the same suit, then we have \(\binom{13}{5} \) ways to get all 5 cards from that suit.
3. There are 4 suits.
4. So the number of possible flushes is \(4 \cdot \binom{13}{5} = 5,148 \).
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?
Equally Likely Outcomes
Permutations and Combinations
Examples

How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let's assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don't need to divide out permutations.
4. So the number of possible straights is $10 \cdot 4 = 10\cdot 240$.

And that's why a flush beats a straight.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight:

 - Ace through 5
 - to 10 through ace.

 Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.

 Because of the way we count here, we don’t need to divide out permutations.

 So the number of possible straights is

 $10 \cdot 4 = 10 \cdot 240$.

 And that’s why a flush beats a straight.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.

2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.

3. Because of the way we count here, we don’t need to divide out permutations.

4. So the number of possible straights is $10 \cdot 4^5 = 10 \cdot 1024 = 10,240$.

And that’s why a flush beats a straight.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.

2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don’t need to divide out permutations.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don’t need to divide out permutations.
4. So the number of possible straights is $10 \times 4^5 = 10,240$. And that’s why a flush beats a straight.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.

2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.

3. Because of the way we count here, we don’t need to divide out permutations.

4. So the number of possible straights is $10 \times 4 = 40$. And that’s why a flush beats a straight.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don’t need to divide out permutations.
4. So the number of possible straights is $10 \cdot 4^5$
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don’t need to divide out permutations.
4. So the number of possible straights is $10 \cdot 4^5 = 10,240$.
How Many 5 Card Hands are Made up of Consecutive Cards (Straights)?

Let’s assume that aces can be high or low.

1. There are 10 ways to get a straight: Ace through 5 to 10 through ace.
2. Because there are 4 suits, there are 4 possibilities for each card in a straight that runs from one value to another.
3. Because of the way we count here, we don’t need to divide out permutations.
4. So the number of possible straights is $10 \cdot 4^5 = 10,240$.

And that’s why a flush beats a straight.
Wild Bill Hickock and the Dead Man’s Hand
Wild Bill Hickock and the Dead Man’s Hand
Wild Bill Hickock and the Dead Man’s Hand

Always remember that I endorse the *understanding* of games of chance
Wild Bill Hickock and the Dead Man’s Hand

Always remember that I endorse the *understanding* of games of chance, not gambling.